SIEMENS

SIMATIC S5

S5-135U
CPU 928B

Programming Guide

Order No. 6ES5 998-2PR21
Release 01

C79000-H8576-C898-01

Introduction

User Program

Program Execution

Operating Modes and Program
Processing Levels

Interrupt and Error Diagnosis

Integrated Special Functions

Extended Data Block DX O

Memory Assignment and
Memory Organization

Memory Access Using
Absolute Addresses

Multiprocessor Mode and
Communication

PG Interfaces and Functions

Appendix

Further Reading

List of Abbreviations
Index
List of Tables and Figures

The CPU 922/CPU 928/CPU 928B/CPU 948 List of
Operations, Order No. 6ES5 997-3UA22 is included

with this manual.

10

11

12

13

14

Copyright

Copyright © Siemens AG 1994 All Rights Reserved

The reproduction, transmission or use of this document or its contents is not permitted without express
written authority.

Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a
utility model or design, are reserved.

Disclaimer of liability

We have checked the contents of this manual for agreement with the hardware and software described.
Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in
this manual are reviewed regularly and any necessary corrections included in subsequent editions.
Suggestions for improvement are welcomed.

Technical data subject to change.

Safety-related guidelines

This manual contains notices which you should observe to ensure your own personal safety, as
well as to protect the product and connected equipment. These notices are highlighted in the
manual by a warning triangle and are marked as follows according to the level of danger:

Warning

indicates that death, severe personal injury or substantial property damage can
result if proper precautions are not taken.

Caution
indicates that minor personal injury or property damage can result if proper
precautions are not taken.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons
are defined as persons who are authorized to commission, to ground and to tag equipment,
systems and circuits in accordance with established safety practices and standards.

Siemens Aktiengesellschaft 6ES5 998-2PR21
EWK Elektronikwerk Karlsruhe

Printed in the Federal Republic of Germany

How to use this Manual

Scope

This programming guide describes the following versions of the
CPU 928B-3UB11 and CPU 928B-3UB12 and its system software:

The additional functions of the CPU 928B-3UB12 are indicated in the
manual. Some of them can be retrofitted to the CPU 928B-3UB11
(see Section 1.8 for details).

CPU 928B Programming Guide
C79000-D8576-C898-01 0-1

How to Use this Manual

Overview of the Chapters

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

This informs you about the areas of application of th& 38J
programmable controller with the CPU 928B and its device structure.
It explains the typical mode of operation of the CPU and illustrates
how a CPU program is structured.

The chapter also contains suggestions about how to tackle
programming and which characteristics of the CPU 928B are
important for programming.

If you have already worked with the CPU 928B-3UB11 and want to
know the differences between these CPU and the CPU 928B-3UB12
you will find this information in this chapter.

This explains the components of a STEP 5 user program and how the
program can be structured.

This is intended for readers who do not yet have much experience of
using the STEP 5 programming language. It therefore deals with the
basics of STEP 5 programming and explains the STEP 5 operations in
detail (with examples).

Experienced readers who may find that the information about specific
operations in the pocket guide is inadequate, can use Section 3.5 as a
reference section.

This provides an overview of the modes and program execution levels
of the CPU 928B. It provides you with detailed information about
various start-up modes and the associated organization blocks in
which you can program your routines for differrent start-up situations.

The chapter also explains the differences between the program
execution levels "cyclic processing"”, "time-controlled processing" and
"interrupt-driven processing" and which blocks are available for your

user program.

This informs you about errors to be avoided when planning and
writing your STEP 5 programs.

The chapter tells you about the help you can obtain from the system
program for diagnosing errors and which reactions can be expected
and informs you about the blocks in which you can program reactions
to certain errors.

The chapter also explains the CPU 948 self-test.

CPU 928B Programming Guide
C79000-D8576-C898-01

How to Use this Manual

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

CPU 928B Programming Guide
C79000-D8576-C898-01

This covers the special functions integrated in the system program. It
tells you how to use the special functions and how to call and assign
parameters to the special function OBs. The chapter also explains how
to recognize and deal with errors in the processing of a special
function.

This describes the use of data block DX 0 and its structure. The chapter
informs you of the significance of the various DX 0 parameters. Based on
examples, you will learn how to create data block DX 0 or how to assign
the parameters in a screen form.

This is a reference section for experienced system users. It provides
information about the memory organization of the CPU 928B and
certain system data words which contain information that can be
called up by the user.

This is also for experienced system users. The chapter explains how to
address data in certain memory areas using absolute addresses.

This explains when the multiprocessor mode can be used and how
data can be exchanged between the CPUs and CPs. The chapter
provides information about programming for multiprocessor operation.
The remainder of the chapter provides detailed information and
application examples for exchanging largeoants of data in the
multiprocessor mode (multiprocessor communication).

This tells you how to connect your CPU to a PG and the functions
provided by the PG software to testyour STEP 5 program.

This contains the Appendix with technical specifications of the CPUs
which can be used on the S5-135U, some reference tables with
important information on error diagnostics and an ISTACK evaluation
example.

How to Use this Manual

Chapter 13

Chapter 14

This lists documentation for further reading.

This is intended to help you find themes quickly and contains a list of
abbreviations and a list of keywords as well as lists of all the
numbered tables and figures.

CPU 928B Programming Guide
C79000-D8576-C898-01

How to Use this Manual

Conventions used in the text

Entries in the margin

Fourth order entries

Notes

Instructions

CPU 928B Programming Guide
C79000-D8576-C898-01

To provide you with an overview of the contents of the pages, the
manual uses the following conventions in addition to a 2nd and 3rd
order of titles:

Entries in the margin are keywords printed in italics on the left-hand

edge of a page. They provide information about the contents of one or
more paragraphs on the page.

Fourth order entries are not numbered but appear in the margin in bold
face and identify a longer section of text.

The following conventions are also used.

Note
Important information is indicated in this format.

Instructions (often a sequence of operations to be performed) are
represented in tables, e.g.

Step Action Result

1 Switch the mode selector |The CPU is in the stop
from RUN to STOP. mode. The STOP LED is lit
continuously.

Hold the reset switch in the
OVERALL RESET potion;
at the same time, switch the
mode selector from STOP ¢
RUN and back to STOP.

An OVERALL RESET is
requested. The STOP LED
flashes quickly.

)

How to Use this Manual

Reference tables Specific information you may require at any time is contained in
numbered tables as shown in the following example and can be found
in the list of tables (refer to Chapter 14).

Table 3-2 Binary logic operations

Operation Operand Function
A AND logic operation with scan for signal state "1"
6] OR logic operation with scan for signal state "1"
| 0.0to127.7 of an input in the PII
Examples Examples, some of which cover several pages, are highlighted by a gray
frame. When the examples cover more than one page this is clearly
indicated.

Example 1: Calling and assigning parameters to a function block in the
methods of representation STL and LAD/CSF in a program block

Method of representation STL

CPU 928B Programming Guide
C79000-D8576-C898-01

Introduction 1

Contents of Chapter 1

1.1

1.2

13

14

15

1.6

1.7

1.8

Area of Application for the S5-135U withthe CPU 928B. 1-4
Typical Mode of Operation of a CPU e 1-6
The Programs in @ CPUt e e e e 1-8
SYSEM PrOGraIM . . oo o e e e 1-8
L0 LT o] (0 0| = o 1 1-10
Which Operands are available to the User Program?. 1-12
Accessing Operand Areas and MemoOry Areasottt i e ee e 1-16
How to Tackle Programming?t e 1-17
Programming TOOIS 1-20
What is New with the CPU 928B7? e 1-21

CPU 928B Programming Guide
C79000-D8576-C898-01 1-1

Introduction 1

Aims of the manual This manual is intended to provide specialized information about
programming the CPU 928B for users who already have basic
knowledge of programming PLCs and want to use the CPU 928B in
the S5-135U programmable contesllIf you do not yet have this
basic knowledge, we strongly advise you read the documentation
introducing the programming language STEBBEP 5 Manual
refer to Chapter 13) or take part in a course at our training center.
SIEMENS provides comprehensive training for SIMATIC S5. For
more detailed information, contact your local SIEMENS office.

Contents of Chapter 1 Chapter 1 explains how to use the manual and deals with the areas of
application of the S5-135U programmable controller with the
CPU 928B and its structure.
The chapter explains the typical mode of operation of a CPU and the
structure of the CPU program.
You will also find a few suggestions about how to tackle
programming and will learn some of the features of the CPU 928B
(-3UB12) which are important for programming.
If you have already worked with the CPU 928B (-3UB11) and would
like to know the differences between these modules and the
CPU 928B (-3UB12), refer to Section 1.8.

CPU 928B Programming Guide
C79000-D8576-C898-01 1-3

Area of Application for the S5-135U with the CPU 928B

1.1 Area of Application for the S5-135U with the CPU 928B

SIMATIC S5 family

Suitability

The S5-135U programmable controller belongs to the family of
SIMATIC S5 programmable controllers. With the CPU 928B, it is the
most powerful multiprocessor unit for process automation (open and
closed loop control, signalling, monitoring, logging).

Owing to its modularity and high performance, it can be used for
medium to extremely large control systems as well as for complex
automation tasks at the plant and process supetrvision level.

The S5-135U with the CPU 928B is particularly suitable for the
following:

Tasks requiring fast bit and word-oriented processing and fast
reaction times, i.e. with extremely fast open and closed loop controls.
Examples of this are fast processes @hanical engineering

(bottling plant, packing machines or similar systems) and in the
automobile mdustry.

Tasks requiring an extremely high storage capacity and fast access
times, e.g. in the automobile industry, process and plant
engineering.

Tasks requiring fast communication with other CPUs installed in
the PLC and operating in the multiprocessor mode and with CP
modules (e.g. when connected to bus systems, host computers, for
visualization, operation and monitoring).

Complex tasks which can be handled efficiently and clearly using
the high level languages C and SCL.

CPU 928B Programming Guide
C79000-D8576-C898-01

Area of Application for the S5-135U with the CPU 928B

This page has been left intentionally blank.

CPU 928B Programming Guide
C79000-D8576-C898-01 1-5

Typical Mode of Operation of a CPU

1.2 Typical Mode of Operation of a CPU

Mode of operation ofa CPU The following modes of operation are possible in a CPU:

C)

Cyclic processing Time-controlled processing Interrupt-driven processing

Cyclic processing This is the main part of all activities in the CPU. As the name already
says, the same operations are repeated in an endless cycle.

Cyclic processing can be divided into three main phases, as follows:

Phase Sequence CPU Process

All the input modules assigned to the
1 | CPU are scanned by the system

program and the values read in are nput | 1.3

stored in the process image of the Read in process image

inputs (PII) P 9 of the inputs <+ Input 1 1.4
P ' Input | 1.5

The values contained in the Pl are ot ot gl

2 | processed by the user program and the
values to be output are entered in the
process image of the outputs (PIQ).

The values contained in the process Output process image Output Q 2.0
3 |image of the outputs are output by the of the outputs >+)— Output Q 3.1
system program to the output module Output Q 4.7

assigned to the CPU.

2]

CPU 928B Programming Guide
1-6 C79000-D8576-C898-01

Typical Mode of Operation of a CPU

Time-controlled processing

@

Interrupt-driven processing

«“ ! N

Processing according to
priority

Oy

CPU 928B Programming Guide
C79000-D8576-C898-01

In addition to the cyclic processingme-controlled processing is

also available for processes requiring control signals at constant
intervals, e.g. non-time critical monitoring functions performed every
second.

If the reaction to a particular process signal must be particularly fast, this
should be handled wiilhterrupt-driven processing. With, for example,

a process interrupt, triggered via an interrupt generating module, you can
activate a special processing section within your program.

The types of processing listed above are handled by the CPU
according to theipriority .

Since a fast reaction is required to a time or interrupt event, the CPU
interrupts cyclic processing to handle a time or interrupt event. Cyclic
processing therefore has the lowest priority.

The Programs in a CPU

1.3 The Programs in a CPU
The program existing on every CPU is divided into the following:
o thesystem program
and

e theuser program.

System program The system program organizes all the functions and sequences of the
CPU which do not involve a specific control task (refer to Fig. 1-2).

of the inputs

Execute start-up I
Update process image

o | O
Call
_ System ~
Output process image
of the outputs user
S @
% | program processing
I ™~ (inter-
Manage memory k
«)
faces)

~
N

Handle communications @ @ Handle errors

via 2nd serial interface

Execute communications
with the programmer

Fig. 1-1 Tasks of the system program

CPU 928B Programming Guide
1-8 C79000-D8576-C898-01

The Programs in a CPU

Tasks The tasks include the followiné).

e cold and warm restart,

» updating the process image of the inputs and outputting the
process image of the outputs,

 calling the cyclic, time-controlled and interrupt-driven programs,
» detection and handling of errors,
* memory management,

e communication with the programmer (PG).

User interfaces As the user, you can influence the reaction of the CPU to particular
situations and errors via special interfaces to the system program.

Default system reaction The following chapters, except for Chapter 7, describe ¢lfeault
system reactionto process events or errors. Depending on the
defaults, the CPU changes to the stop mode if an operation code error
occurs and the error organization block is not loaded.

Modifying the defaults You can modify the system response by assigning parameters for the
data block DX 0.
Chapter 7 describes the system respofidwing modification.

D When operating with several CPUs (multiprocessing) further tasks are involved.

CPU 928B Programming Guide
C79000-D8576-C898-01 1-9

The Programs in a CPU

User program

Tasks

The user program contains all the functions required for processing a
specific control task In general terms, these functions can be
assigned to the interface provided by the system program for the
various types of processing, as follows:

Type of processing Task

Cold and warm restart To provide the conditions under which
the other processing functions can start
from a defined status following a cold or
warm restart of the control system (e.g.
assigning specific values to signals).

Cyclic processing Constantly repeated signal processing
(e.g. logic operations on binary signals
reading in and analyzing analog value
specifying binary signals for output,
outputting analog values).

iz

Time-controlled Special, time-dependent processing with

processing the following time conditions:

- faster than the average cycle,

- at a time interval greater than the
average cycle time,

- at a specified point in time.

Interrupt-driven processing Special, fast reactions to certain process
signals.

Error reaction Handling problems within the normal
sequence of the program.

CPU 928B Programming Guide
C79000-D8576-C898-01

The Programs in a CPU

Structure

User memory

| User program |

Code blocks
Organization Program Function Sequence
blocks blocks blocks blocks
OB PB FB/FX SB
STEP 5 STEP 5 STEP 5 STEP 5
operations operations operations operations
FB 8 i

Fsol — 126 —Is
SEGMENT 1
F 502 NAME :TRANS
113
F 503 Q53 0005 :L IB 3

0006 T FW 200

0007 :C DB 5
0008 DO _FW 200
0009 L DW 0
000A T QW 6
000B BE
Data blocks
DB L KH = 0101;
static or dynamic data 2 KE
(bits, bytes, words, double words) 4
5:
6:
7.

DX 1. KH = FFFF;
. . 2: KH = FFFF;
static or dynamic data 3 KH = FFFFE
(bits, bytes, words, double words) 4: KH = FFFF;
5. KH = FFFF;
6. KH = FFFF;

7

Fig. 1-2 Structure of a STEP 5 user program

CPU 928B Programming Guide
C79000-D8576-C898-01 1-11

The Programs in a CPU

Storing the user program

Interfaces to the system
program

The CPU 928B has two areas for storing blocks:

e User memory: max. 64 Kbytes
The user memory is on a plug-in RAM or EPROM submodule and
contains logic and data blocks (if the user memory is an EPROM
submodule, the data blocks whose data are changed by the user
program must be loaded in the DB RAM).

Data block RAM (DB RAM): max. 46 Kbytes

The DB RAM is an additional memory area for storing data
blocks.

Organization blocks are available as interfaces to the system
program for the special types of processing.

CPU 928B Programming Guide
C79000-D8576-C898-01

Which Operands are available to the User Program?

1.4 Which Operands are available to the User Program?

The CPU 928B provides the following operand areas for
programming:

e process image and I/Os
» flags (F flags and S flags)
» timers/counters

» data blocks

Process image of the inputs
and outputs PII/PIQ

Characteristics Size

The user program can access the following data typE28 bytes

in the process image extremely quickly: each for
- single bits, inputs and
- bytes, outputs
- words,

- double words

I/O area (P area)

Characteristics Size

The user program can access the 1/0 modules dire@46 bytes

via the S5 bus. each for
inputs and
The following data types are possible: outputs
- bytes,
- words.
Extended I/O area (O area)
Characteristics Size

The user program can access the 1/0 modules dire@46 bytes

via the S5 bus. each for
inputs and
The following data types are possible: outputs
- bytes,
- words.

CPU 928B Programming Guide
C79000-D8576-C898-01

Which Operands are available to the User Program?

F flags

S flags (extended flag area)

Characteristics

Size

The flag area is a memory area which the user
program can access extremely quickly with certain
operations.

2048 bits

The flag area should be used ideally for working data

required often.

The following data types can be accessed:
- single bits,
- bytes,
- words,
- double words.

Single flag bytes can be usedim&rprocessor
communication flags (IPC flags) to exchange data

between the CPUs in the multiprocessor mode (refer

to Chapter 10). IPC flags are updated by the syste
program at the end of the cycle via a buffer in the

m

coordinator or CP/IP.

Characteristics

Size

The CPU 928B also contains an additional flag are
the S flag area. The user program can also access
area extremely quickly as with the F flags.

S flagscannot however by used astual opeands
with function block calls nor a®C flags for data
exchange between the CPUs. The bhit test operatio
of the CPU 948 can also not be used with the S fla

These flags can only be used with the PG system
software "S5-DOS" from version 3.0 upwards or
"S5-DOS/MT" from version 1.0 upwards.

&, 8192 bits
this

gs.

CPU 928B Programming Guide

C79000-

D8576-C898-01

Which Operands are available to the User Program?

Timers (T)
Characteristics Size
The user program loads timer cells with a time value | 256 timer
between 10 ms and 9990 s and by means of a start cells
operation, decrements the timer from this value at the
preselected intervals until it reaches the value zero.
Counters (C)
Characteristics Size

The user program loads counter cells with a start value o556
(max. 999) and then increments or decrements the

M.counters

Data words in the current data
block

Characteristics Size

A data block contains constants and/or variables inthe 25¢
byte, word or double word format. With STEP 5
operations, you can always access the "current" data
block (refer to Section 2.4.2). 1)
The following data types can be accessed:

- single bits,

- bytes,

- words,

- double words.

words

9" In data blocks with a length greater than 256 words, you can only access data

words with the numbers > 255 with operations for absolute memory access
(refer to Chapter 9).

CPU 928B Programming Guide
C79000-D8576-C898-01 1-15

Accessing Operand Areas and Memory Areas

1.5 Accessing Operand Areas and Memory Areas

Relative addressing

Absolute addressing

Current data block

STEP 5 operations use two different mechanisms for accessing
operand areas and the entire memory:

The majority of STEP 5 operations address a memory location
relative to the beginning of the operand area. If these operations are
used exclusively, code and data areas of the user program are
protected against unintentional overwriting. At the same time, the user
program is dependent on the CPU as long as the CPU has an
appropriate operand area.

Some STEP 5 operations work with absolute addresses. These
operations can be used to access the entire memory area. They can
only be used in function blocks and should only be used with great
care due to the danger of data corruption. These operations are
dependent on the CPU used. However, there is no difference between
the CPU 928 and CPU 928B regarding these operations.

Data blocks are loaded into the user memory or the DB-RAM by the
system program. Their location depends on the memory space
available in each case. The lengths of the individual data blocks can
vary and are set when programming the data blocks.

The current data block is the data block whose starting address and
length are entered in special registers. This entry is made via a special
STEP 5 operation for calling or "opening" a data block (like the page
of book). Unless operations widtbsolute addressing are used, the

user program can only access the current data block. The following
data types are possible: single bits, bytes, words and double words.

CPU 928B Programming Guide
C79000-D8576-C898-01

How to Tackle Programming

1.6 How to Tackle Programming

Implementation stages

Recursive procedure

Stage 1

CPU 928B Programming Guide

C79000-D8576-C898-01

If you are an experiencedarsyou have probably found the most

suitable method for creating programs for yourself and you can skip
this section.

Less experienced readers will find tips for designing, programming,
testing and starting up your STEP 5 program.

The implementation of the STEP 5 control program can be divided
into three stages:

Stage Activity
1 Determining the technological task
2 Designing the program
3 Creating, testing and starting the program

In practice, you will recognize that certain steps must be repeated
(recursive procedure), e.g. when you realize that more signals are
required to improve the handling of the task.

Determining the technological task:

Stage Activity

1 Create a general block diagram outlining the contro
tasks of your process.

2 Create a list of the input and output signals required
for the task.

3 Improve the block diagram by assigning the signals
and any particular time conditions and/or counter
statuses to the individual blocks.

How to Tackle Programming

Stage 2 Designing the program:
Stage Activity
1 Based on the improved block diagram, decide on the

types of processing required of your program (cycli
processing, time-controlled processing etc.) and select
the OBs required for this.

(9]

2 Divide the types of processing into technological
and/or functional units.

3 Check whether the units can be assigned to a program
or function block and select the blocks you require
(PB x, FB y etc.)

4 Find out which timers, counters and data or results
memory you require.

5 Specify the tasks for each of the proposed logic blocks
and the data for flags and data blocks which may he
required. Create flow diagrams for the logic blocks.

Notes on the scope of When deciding on the types of processing, keep the following
cyclic processing conditions in mind:

« The cycle must run through quickly enough. The process statuses
must not change more quickly than the CPU can react. Otherwise
the process can get out of control.

« The maximum reaction time should be taken as twice the cycle
time.
The cycle time is determined by the cyclic processing of the
system program and the type and scope of the user program. It is
often not constant, since the cyclic user program may be
interrupted when time and interrupt-driven program sections are
called.

CPU 928B Programming Guide
1-18 C79000-D8576-C898-01

How to Tackle Programming

Stage 3 Creating, testing and starting up the program:

Stage

Activity

Decide on the type of representation for the logic
blocks (LAD, CSF or STL, refer to Chapter 2).
Remember that function blocks can only be create
the STL method of representation.

Program all logic and data blocks (please refer toy
STEP 5 manual).

Start up the blocks one after the other (you may hg
to program a different OB for each individual step,
call the logic blocks):

la: load the block(s)

1b: test the block(s)

(For more detailed information please refer to your
STEP 5 manual and Chapter 11).

When you are certain that all the logic blocks run
correctly and all the data can be correctly calculate
and stored, you can start up your whole program.

d in

our

(0]

o

Note on test strategies When you actually start up your program for the first time in genuine
process operation, i.e. with real input and more importantly output
signals, is a decision that must be left up to yourself or to a team of

experts.

The more complex the process, the greater the risk and therefore the
greater the care required when starting up.

CPU 928B Programming Guide
C79000-D8576-C898-01

Programming Tools

1.7 Programming Tools

Suitable PGs

Suitable software

The following programmers are available for creating your user
program, PG 685, PG 710, PG 730, PG 750 and PG 770. You can
check on the performance and characteristics of these devices in the
catalog ST 59 (see Chapter 13).

Note

Enter the CPU ID fo€ PU 922 (0010H)in system data word
RS 29 (see Chapter 8) in order to be able to use a PG 615 or g CP
3xx. In this case, you cannot use S flags.

If you do not change the ID, this will lead to erroneous indicato
e.g. in the case of ISTACK output, or to the loss of some
debugging aids.

In all programmers, the TATUS test function operates without
restriction only at scan times 9f2.5 s. This value is halved in the
case of parallel operation of 2 programmer interfaces (see
Chapter 11).

v

You can creataser programs for SIMATIC S5 programmable
controllers as follows:

e IntheSTEP 5programming language,

Here you require the STEP 5 programming package along with the
system software STEP 5/ST or STEP 5/MT (description, refer to
/3/ in Chapter 13),

or
» In ahigher programming language:

If you are familiar with programming in higher programming
languages, you can also formulate your STEP 5 program for the
CPU 928B as follows:

- SCL (refer to /12/ in Further Reading, the SCL compiler is
contained in the PG software "S5-DOS/MT" from version 6
upwards.)

You can also creat@ograms for sequence control systemin a
graphic representation using tR®@ APH 5 programming package
(description, refer to /4/ in Chapter 13).

Depending on the task, you can also incorporate "off-the-peg"
standard function blocks in your user program. The performance and
characteristics of these blocks are described in the catalog ST 57 (see
Chapter 13).

CPU 928B Programming Guide
C79000-D8576-C898-01

What is New with the CPU 928B (-3UB12)?

1.8 Whatis New with the CPU 928B (-3UB12)?

Additional restart type:
RETENTIVE COLD
RESTART Y

Delay interrupt

Alternative loading of data
blocks *

SINEC L1 via the 2nd serial
interface

The CPU 928B (-3UB12) offers you the following new functions
compared to the CPU 928B (-3UB11).

As well as the existing restart types (MANUAL/AUTOMATIC
COLD RESTART; MANUAL/AUTOMATIC WARM RESTART)
you can use the following additional restart types:

e« RETENTIVE MANUAL COLD RESTART

e« RETENTIVE AUTOMATIC COLD RESTART

You can set these restart types by assigning parameters in DX 0.
As well as the familiar time interrupts, an additiodallay interrupt

is processed by the né®B 6 organization block.

The delay interrupt has a time resolution of 1 ms.

You assign parameters to the desired delay time with theiens3
organization block.

You can use the programmer to load data blocks into DB RAM first,
instead of into the user memory. Selection of the loading mode is
controlled via bit 0 in system data word RS 144.

Connection to the SINEC L1 LAN (with the new L1 interface card)
has been expanded for communication via the second serial interface:
e Use as slave in

- Normal communication

- Internode communication

- Interrupt communication

- Broadcast;

« Use as master in point-to-point connections.

D can be retrofitted to CPU 928B (-811)

CPU 928B Programming Guide
C79000-D8576-C898-01

User Program 2

Contents of Chapter 2

21

211
212
213
214
2.15

2.2

221
222

2.3

231
2.3.2
2.3.3
234

24

24.1
242
243

STEP 5 Programming Languageottt e 2-4
The LAD, CSF, STL Methods of Representation. 2-4
StruCtUredProgramming.o .ttt et e e e e 2-5
STEP 5 Operations ottt i e e 2-6
Number Representationt e 2-8
STEP 5 Blocks and Storing them in Memory. 2-12
Program, Organization and Sequence Blocks 2-16
Organization Blocks as User Interfaces. i 2-18
Organization Blocks for Special Functions. 2-22
Function BIOCKS 2-23
Structure of Function BIOCKS 2-24
Programming Function Blocks. 2-26
Calling Function Blocks and Assigning Parameterstothem 2-28
Special Function BIOCKS. 2-33
Data BIOCKS. 2-35
Creating Data BIOCKS o i e e 2-37
Opening Data BIOCKS o 2-38
Special Data BIOCKS e 2-41

CPU 928B Programming Guide
C79000-B8576-C898-01 2-1

User Program 2

The following chapter explains the components that make up a
STEP 5 user program for the CPU 928B and how it can be structured.

CPU 928B Programming Guide
C79000-B8576-C898-01 2-3

STEP 5 Programming Language

2.1 STEP 5 Programming Language

Types of operation

2.11
The LAD, CSF, STL
Methods of Representation

Graphic representation or
list of statements

With the STEP 5 programming language, you convert automation
tasks into programs that run on SIMATIC S5 programmable
controllers. You can program simple binary functions, complex digital
functions and arithmetic operations including floating point arithmetic
using STEP 5.

Theoperationsof the STEP 5 programming language are divided
into the following groups:

Basic operations
e you can use these operations in all logic blocks

« methods of representation: ladder diagram (LAD), control system
flowchart (CSF), statement list (STL).

Supplementary operations and system operations:
« canonly be used in function blocks
« only statement list (STL) method of representation

» system operations: only experienced STEP 5 programmers should
use system operations

When programming in STEP 5, you can choose between the three
methods of representation ladder diagram (LAD), control system
flowchart (CSF) and statement list (STL) for each individual logic block.
You can choose the method of representation that best suits your
particular application.

The machine code MC5 that the programmers (PGs) generate is the
same for all three methods of representation.

If you follow certain rules when programming in STEP 5 (see /3/ in
Chapter 13), the programmer can translate your user program from
one method of representation into any other.

While the ladder diagram (LAD) and control system flowchart (CSF)
methods of representation represent your STEP 5 program
graphically, statement list (STL) represents STEP 5 operations
individually as mnemonic abbreviations.

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Programming Language

Ladder diagram

Statement list

Control system flowchart

Programming with
graphic symbols
like a circuit diagram

complies with

Programming with
mnemonic abbreviations
of function designations

complies with

Programming with
graphic symbols

complies with

DIN 19239 DIN 19239 IEC 117-15
DIN 40700
DIN 40719
DIN 19239
LAD STL CSF
A | &
4 H/H FC o AN | :
A |] I
S ON |
A/ o | -
= Q
i E—

Fig. 2-1 Methods of representation in the STEP 5 programming language

Graphic representation of
sequential controls

2.1.2
Structured Programming

CPU 928B Programming Guide
C79000-B8576-C898-01

GRAPH 5 is a programming language for graphic representation of
sequential controls. It is at a higher level than the LAD, CSF, STL
methods of representation. A program written in GRAPH 5 as a
graphic representation is automatically converted to a STEP 5
program by the PG. (Refer to /4/ in Chapter 13)

Using STEP 5, you can structure your program by dividing it into
self-contained program sections (blocks). This division of your
program clarifies the essential program structures making it easy to
recognize the system parts that are related within the software.

STEP 5 Programming Language

What is a block?

2.1.3
STEP 5 Operations

Example

Structured programming offers you the following advantages:
« simple and clear creation of programs, even large ones

» standardization of program parts

« simple program organization

e easy program changes

« simple, section by section program test

« simple system start-up

A block is a part of the user program that is distinguished by its
function, structure or application. You can differentiate between
blocks that contaistatements(code) i.e. organization blocks,

program blocks, function blocks or sequence blocks, and blocks that
containdata (data blocks).

A STEP 5 operation is the smallest independent unit of the user program.
It is the work specification for the CPU. A STEP 5 operation consists of
an operation and an operand as shown in the following example:

Operation code Parameter

~_ L

F 54.1

/N

Operation Operand

(what is to be done?) (with what is the
operation to be done?)

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Programming Language

Absolute and symbolic You can enter the operaatisdutely orsymbolically (using an
operands assignment list) as shown in the following example:
Absolute representation: A 114
Symbolic representation: ‘A -Motorl
For more information on absolute and symbolic programming, refer to
your STEP 5 manual.
Application of STEP 5 The STEP 5 operation set enables you to do the following:
operations

» setorreset and combine binary values logically

» load and transfer values

e compare values and process them arithmetically

» specify timer and counter values

« convert number representations

 call blocks and execute jumps within a block
and

 influence program execution

Result of logic operation RLO The central bit for controlling the program is the result of logic
operation RLO. This is obtained as a result of binary logic operations
and is influenced by some operations.

Section 3.5 describes the whole STEP 5 operation set and explains how
the RLO is obtained. This section also includes programming examples
for individual STEP 5 operations.

CPU 928B Programming Guide
C79000-B8576-C898-01 2-7

STEP 5 Programming Language

2.14
Number Representation

Numerical input on the PG

Permitted operations

To allow the CPU to logically combine, modify or compare numerical
values, these values must be located in the accumulators (working
registers of the CPU) as binary numbers.

Depending on the operations to be carried out, the following number
representations are permitted in STEP 5:

Binary numbers: 16-bit fixed point numbers
32-bit fixed point numbers

32-bit floating point numbers (with a 24-bit
mantissa)

Decimal numbers: BCD-coded numbers (sign and 3 digits)

When you use a programmer to input or display humber values, you
set the data format on the programmer (e.g. KF or fixed point) in
which you intend to enter or display the values. The programmer
converts the internal representation into the form you have requested.

You can carry oudll arithm etic operationswith the 16-bit fixed
point numbers and floating point numbers, including comparison,
addition, subtraction, multiplication and division.

Note
Do not use BCD-coded numbers fathanetical operations, since
this leads to incorrect results.

Use 32-bit fixed point numbers to execute comparison operations.
These are also necessary as an intermediate level when converting
numbers in BCD code to floating point numbers. With the operations
+D and -D they can also be used for addition and subtraction.

The STEP 5 programming language alsoco@sersion operationsthat
enable you to convert numbers directly to the most important of the other
numerical representations.

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Programming Language

16-bit and 32-bit fixed
point numbers

Coding of fixed point numbers

PG input

Permitted numerical range

Using fixed point numbers

CPU 928B Programming Guide
C79000-B8576-C898-01

Fixed point numbers are whole binary numbers with a sign.

Fixed point numbers are 16 bit (= 1 word) or 32 bit (= 2 words) in
binary representation. Bit 15 or bit 31 contains the sign.

e 0’ = positive number

e '’ = negative number

The two’s complement representation is used for negative numbers.

Input of 16-bit fixed point number data format at the PG: KF

Input of 32-bit fixed point number data format at the PG: DH

-32768 to +32767 (16 bit)

-2147483648 to +2147483647 (32 bit)

Use fixed point numbers for simple calculations and for comparing

number values. Since fixed point numbers are always whole numbers,
remember that the result of dividing two fixed point numbers is also a

fixed point number without decimal places.

STEP 5 Programming Language

Floating point numbers

Using floating point numbers

Accuracy

Floating point numbers are positive and negative fractions. They
always occupy a double word (32 bits). A floating point number is
represented as an exponential number. The mantissa is 16 or 24 bits
long and the exponent is 8 bits long.

In the CPU 928B, the default mantissa (assuming you have not
changed the setting) is 16-bits long (bits 8 to 23) for adding,
subtracting, multiplying and dividing. The least significant (on the
right) bits 0 to 7 always have the value "0".

If you require floating point calculations with a higher accuracy (and
can accept a slightly longer runtime), program the setting "floating
point arithmetic with 24-bit mantissa" in DX 0 (see Chapter 7).

The exponent indicates the order of magnitude of the floating point

number. The sign of the exponent tells you whether the value of the
floating point number is greater or less than 0.1.

Use floating point numbers for solving extensive calculations,
especially for multiplication and division or when you are working
with very large or very small numbers!

The mantissa indicates the accuracy of the floating point number as
follows:

» Accuracy with a 24-bit mantissa:

2242 0.00@00059604(correspnds to 7 decimal places)
« Accuracy with a 16-bit mantissa:

216 = 0,00@15258(corresponds to 4 decimal places)

If the sign of the mantissa is "0" the number is positive; if the sign is
"1" it is a negative number in its two’s complement representation.

Thefloating point value '0’ is represented as the binary value
80000000H(32 bits, see below).

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Programming Language

Coding floating point numbers Coding a floating point number:

31 30 24 123

22 0

v |28 R AR VALE S LB

Exponent

Mantissa

Specification of the data format for floating point numbers at the

PG: KG

Permissible numerical range + 0.1469368 x 18%to +0.1701412 x 18

Input/output on PG a) in a logic block:

You want to load the number N = 12.34567 as a floating point

number.
Input:

:LKG1234567+2

PG display after you enter the line:

'L KG + 123456‘7 + 02

Mantissa with sign

I'—_pronent (base 10)
with sign

Value of the number input: +0.1234567 Xie 12.34567

b) in a data block:

You want to define the number N = - 0.005 as a floating point

constant.
Input:

6: KG =-5-2

PG display after you enter the line:

6: KG = 500000‘0‘ - 0‘2

Mantissa with sign

|
Exponent (base 10)

with sign

Value of the number input: -0.5 x ¥6- 0.005

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Programming Language

Numbers in BCD code

Permissible numerical range

Decimal numbers are represented as numbers in BCD code. With
their sign and three digits, they occupy 16 bits (1 word) in an
accumulator as shown in the following example:

15 1211 8 7 4 3

VVVYV hundreds tens ones

The individual digits are positive 4-bit binary numbers between 0000 and
1001 (0 and 9 decimal).

The left bits are reserved for the sign as follows:

Sign for a positive number: 0000
Sign for a negative number: 1111
-999 to +999

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Programming Language

2.15
STEP 5 Blocks and Storing
them in Memory

Identifier A block is identified as follows:

« the block type (OB, PB, SB, FB, FX, DB, DX)
and

 the block number (humber between 0 and 255).

Block types The STEP 5 programming language differentiates between the
following block types:

Organization blocks (OB) Organization blocks are the interface between the system program and
the user program. They can be divided into two groups as follows:

With OB 1 to OB 39, you can control program execution, the restart
procedure of the CPU and the reaction in the event of an error. You
program these blocks yourself according to your automation task.
These OBs are called by the system program.

OBs 40 to 100 are blocks belonging to the operating system. You
must not call these blocks.

OBs 121 to 255 contain special functions of the system program. You
can call these blocks, if required, in your user program.

Program blocks (PB) You require program blocks to structure your program. They contain
program parts divided according to technological and functional
criteria. Program blocks represent the heart of the user program.

Sequence blocks (SB) Sequence blocks were originally special program blocks for step by
step processing of sequencers. In the meantime, however, sequencers
can be programmed with GRAPH 5. Sequence blocks have therefore
lost their original significance in STEP 5.

Sequence blocks now represent an extension of the program blocks
and are used as program blocks.

CPU 928B Programming Guide
C79000-B8576-C898-01 2-13

STEP 5 Programming Language

Function blocks (FB/FX) You use function blocks to program frequently recurring and/or
complex functions (e.g. digital functions, sequence control systems,
closed loop controls and signalling functions).

A function block can be called several times by higher order blocks
and supplied with new operands (assigned parameters) at each call.

Using block type FX increases the maximum number of possible
function blocks from 256 to 512.

Data blocks (DB/DX) Data blocks contain the (fixed or variable) data with which the user
program works. This type of block contains no STEP 5 statements and
has a distinctly different function from the other blocks. Using block
type DX doubles the number of possible data blocks.

Formal structure of the All blocks consist of the following two parts:
blocks

» a block header
and

e a block body

Block header Theblock headeris always 5 wordhg and contains information for
block management in the PG and data for the system program.

Block body Depending on the block type, thivck body contains the following:
« STEP 5 operations (in OB, PB, SB, FB, FX),
 variable or constant data (in DB, DX)
and

» aformal operand list (in FB, FX).

CPU 928B Programming Guide
2-14 C79000-B8576-C898-01

STEP 5 Programming Language

Block preheader

Maximum length

Available blocks

CPU 928B Programming Guide
C79000-B8576-C898-01

The programmer also generatesi@éck preheader(DV, DXV, FV,

FXV) for block types DB, DX, FB and FX. These block preheaders
contain information about the data format (for DB and DX) or the
jump labels (for FB and FX). Only the PG can evaluate this
information. Consequently the block preheaders are not transferred to
the CPU memory. You cannot influence the contents of the block

header directly.

A STEP 5 block can occupy a maximum of 4096 words in the
program memory of the CPU (1 word corresponds to 16 bits).

You can program the following block types:

OB 1to 39
FB 0 to 255
total 512
FX 0 to 255
PB 0 to 255
SB 0 to 255
DB 3t0 255 |
. total 506
DX 3 to 255

Data blocks DB 0, DB 1, DB2, DX 0, DX 1 and DX 2 contain
parameters. These are reserved for specific functions and you cannot use
them as normal data blocks.

STEP 5 Programming Language

Block storage

The programmer stores all programmed blocks in the program
memoty in the order in which they are transferred (Fig. 2-2). The
programmer function "Transfer data blocks B" transfers first the code
blocks then the data blocks to the PLC. In RAM mode, the RAM card
is first to be filled with data blocks after transfer of the code blocks
and then the remaining data blocks are written into internal DB RAM.
The start addresses of all stored blocks are placed in data block DB 0.

Address 0

PB1 Location of blocks
in the user memory
FB1

PB2

DB1

SB10

OB1

Fig. 2-2 Example of block storage in the user memory

Alternative loading (only in the By setting bit O in system data word RS 144, you can load data blocks

case of Version -3UB12)

Correcting and deleting
blocks

first into internal DB RAM first (i.e. as long as space is available)
("Alternative loading" - see Chapter 8/RS 144). Data blocks are
transferred to the RAM card only when the DB RAM has been filled.

When youcorrect blocks in "RAM mode", the old block is declared
invalid in the memory and a new block is entered.

Similarly, when blocks areeleted they are not really deleted, instead
they are declared invalid. Deleted and corrected blocks therefore
continue to use up memaory space.

Note
You can use the COMPRESS MEMORY online function to make
space for new blocks. This function optimizes the utilization of
the memory by deleting blocks marked as invalid and shifting
valid blocks together. Compression is handled separately

according to memory card and internal RAM (see Section 11.2/2).

CPU 928B Programming Guide
C79000-B8576-C898-01

Program, Organization and Sequence Blocks

2.2 Program, Organization and Sequence Blocks

Program blocks (PBs), organization blocks (OBs) and sequence
blocks (SBs) are the same with respect to programming and calling.
You can program all three types in the LAD, CSF and STL methods

of representation.

Programmin When programming organization, program and sequence blocks,
g g
proceed as follows:

Step Action

1 First indicate the type of block and then the number of|the
block thatyou want to program.

The following numbers are available for the type of

block listed:
- program blocks 0to 255
- sequence blocks 0to 255
- organization blocks 1to 39

2 Enter your program in the STEP 5 programming language.

When programming PBs, OBs and SBs, you can only
use the STEP basicoperations!

A STEP 5 block should always be a self-contained
program section.

Logic operations must always be completed
within a block.

3 Complete your program input with the block end
operation "BE".

Block calls With the exception of OB 1 to OB 39 you must call the blocks to
process them. Use the special STEP 5 block call operations to call the
blocks.

You can program block calls inside an organization, program,
function or sequence block. They can be compared with jumps to a
subroutine. Each jump causes a block change. The return address
within the calling block is buffered by the system.

CPU 928B Programming Guide
C79000-B8576-C898-01 2-17

Program, Organization and Sequence Blocks

Block calls can be unconditional or conditional as follows:

Unconditional call The "JU" statement belongs to the unconditional operations. It has no
effect on the RLO. The RLO is carried along with the jump to the new
block. Within the new block, it can be evaluated but no longer
combined logically.

The addressed block is processeglardlessof the previous result of
logic operation (RLO - see Section 3.4).

Example:Ju PB 100

Conditional call The JC statement belongs to the conditional operations. The addressed
block is processed only if the previoRsO = 1. If the RLO = 0, the
jump is not executed.

Example:JC PB 100

Note
After the conditional jump operation is executed, the RLO is se
to "1" regardless of whether or not the jump to the block is

executed.
PB 1 PB 5 PB 10
A [1.0 A [2.0
JC PB 10
JU PB 5 0 F15 v
| 5.3 v_|
BE BE
PB 6
A | 1.5 0 [3.0
JC PB 6
A I 3.2 w |
BE BE

Fig. 2-3 Block calls that enable processing of a program block

CPU 928B Programming Guide
2-18 C79000-B8576-C898-01

Program, Organization and Sequence Blocks

Effect of the BE statement

2.2.1
Organization Blocks as
User Interfaces

CPU 928B Programming Guide
C79000-B8576-C898-01

After the "BE" statement (block end), the CPU continues the user
program in the block in which the block call was programmed.
Program execution continues at the STEP 5 statement following the
block call.

The "BE" statement is executed regardless of the RLO. After "BE",

the RLO can no longer be combined logically. However, the RLO or
arithmetic result occurring directly before execution of the BE 2
operation is transferred to the block where the call originated and can

be evaluated there. When program execution returns from the block

that has been called, the contents of ACCU 1, ACCU 2, ACCU 3 and

ACCU 4, the condition codes CC 0 and CC 1 and the RLO are not

changed. (Refer to Section 3.5 for more detailed information about the
ACCUs, CCO/CC1 and RLO).

Organization blocks form the interfaces between the system program
and the user program. Organization blocks OB 1 to OB 39 belong to
your user program just as program blocks. By programming these
OBs, you can influence the behavior of the CPU during start-up,
program execution and in the event of an error. The organization
blocks are effective as soon as they are loaded in the PLC memory.
This is also possible while the PLC is in the run mode.

Once the system program has called a specific organization block, the
user program it contains is executed.

Note

You can program blocks OB 1 to OB 39 as user interfaces and
they are called automatically by the system program as a reaction
to certain events.

Fortest purposesyou can also call these organization blocks
from the user program (JC/JU OB xxx). It is, however, not
possible to trigger a COLD RESTART, e.g. by calling OB 20.

The following table provides you with an overview of the user
interfaces (OBS).

Program, Organization and Sequence Blocks

Table 2-1 Overview of the organization blocks for program execution

Organization blocks for controlling program execution

Block Function and call criterion

OB1 Organization of cyclic program execution;
first call after a start-up, then cyclic call

OB 2 Organization of interrupt-driven program
execution;
Call by interrupt signal of S5 bus (process
interrupt)

OB 3to OB 5 Not used with the CPU 928B

OB 6 Delay interrupt (from Version -3UB12)

OB 7,0B 8 Not used with the CPU 928B

OB 9 Processing clock-controlled time interrupts

Time interrupts with fixed intervals:

OB 10 call every 10 ms
OB 11 call every 20 ms
OB 12 call every 50 ms
OB 13 call every 100 ms
OB 14 call every 200 ms
OB 15 call every 500 ms
OB 16 callevery 1s

OB 17 callevery 2s

OB 18 callevery 5s

CPU 928B Programming Guide
2-20 C79000-B8576-C898-01

Program, Organization and Sequence Blocks

Table 2-2 Overview of the organization blocks for start-up

Organization blocks to control the start-up proedure

Block Function and call criterion

OB 20 Call on request for COLD RESTART (manual
and automatic)

OB 21 Call on request for MANUAL WARM
RESTART/RETENTIVE COLD
RESTART

OB 22 Call on request for AUTOMATIC
WARM RESTART/RETENTIVE COLD
RESTART

Table 2-3 Overview of the organization blocks for error handling

Organization blocks for reactions to device or
1
program errors)

Block Function and call criterion

OB 19 Runtime error (LZF):
called block not loaded

OB 23 Timeout (QVZ) in user program (during direct
access to I/0 modules or other S5 bus
addresses)

OB 24 Timeout (QVZ) when updating the process

image and transferring interprocessor
communication flags

OB 25 Addressing error (ADF)
OB 26 Cycle time exceeded (ZYK)
OB 27 Op. code error (BCF): substitution error
OB 28 STOP b)y PG function/stop switch/
S5 bug
OB 29 Op. code error (BCF):
code not permitted
OB 30 Op. code error (BCF):
parameter not permitted
OB 31 Other runtime errors (LZF)
OB 32 Runtime error (LZF): load and transfer error

with data blocks

OB 33 Collision of time interrupts (WECK-FE)

CPU 928B Programming Guide
C79000-B8576-C898-01 2-21

Program, Organization and Sequence Blocks

Organization blocks for reactions to device or
program errors D

Block Function and call criterion

Table 2-3 continued:

OB 34 Error in closed loop controller processing
(REG-FE)
OB 35 Communication error on the second serial

interface (FE-3)
OB 36 to OB 39 | do not exist for the CPU 928B

n If the OB is not programmed, the CPU changes to the stop mode in the event of

an error.

EXCEPTION: if OB 23, OB 24 and OB 35 do not exist, there iseagtion.
2 OB28 is called before the CPU changes to the stop mode. The CPU stops regard-
less of whether and how OB 28 is programmed.
EXCEPTION: OB28 is not called if the power is switched off.

CPU 928B Programming Guide
2-22 C79000-B8576-C898-01

Program, Organization and Sequence Blocks

2.2.2
Organization Blocks for The following organization blocks contain special functions of the
Special Functions system program. Yocannot program these blocks, but simply call

them (this applies to all OBs with numbers between 40 and 255!).
They do not contain a STEP 5 program. Special function OBs can be
called in all logic blocks. 2

Table 2-4 Overview of organization blocks for special functions

Integral organization blocks with specal functions
Block: Block function:
OB 110 Access to the status (condition code) byte
OB 111 ClearACCU 1, 2,3 and 4
OB 112 ACCU roll up
OB 113 ACCU roll down
OB 120 "Block all interrupts" on/off
OB 121 "Block individual time interrupts" on/off
OB 122 "Delay all interrupts" on/off
OB 123 "Delay individual time interrupts" on/off
OB 150 Set/read system time
OB 151 Set/read time for clock-controlled time
interrupt
OB 152 Cycle statistics
OB 153 Set/read time for delay interrupt
OB 160-163 Counter loops
OB 170 Read block stack (BSTACK)
OB 180 Variable data block access
OB 181 Test data blocks DB/DX
OB 182 Copy data area
OB 190, 192 Transfer flags to data block
OB 191, 193 Transfer data fields to flag area
OB 200, 202-205 Muiprocessor communication
OB 216-218 Access to "pagelCPs and some IPs)
OB 220 Sign extension
OB 221 Set cycle monitoring time
OB 222 Restart cycle monitoring time

CPU 928B Programming Guide
C79000-B8576-C898-01 2-23

Program, Organization and Sequence Blocks

Integral organization blocks with special functions

Block: Block function:

Table 2-4 continued:

OB 223 Compare restart type

OB 224 Transfer blocks of IPC flags

OB 226 Read word from the system program

OB 227 Read checksum of the system program
memory

OB 228 Read status information of a program
execution level

OB 230-237 Functions for standard function blocks
(handling blocks)

OB 240 Initialize shift register

OB 241 Process shift register

OB 242 Clear shift register

OB 250 Initialize PID controller algorithm

OB 251 Process PID controller algorithm

OB 254, 255 Transfer data block to the DB-RAM

These special functions are described in detail in Chapter 6.

CPU 928B Programming Guide
2-24 C79000-B8576-C898-01

Function Blocks

2.3 Function Blocks

CPU 928B Programming Guide
C79000-B8576-C898-01

Function blocks (FB/FX) are also parts of the user program just like
program blocks. FX function blocks have the same structure as FB

function blocks and are programmed in the same way.
You use function blocks to implement frequently recurring or very

complex functions. In the user program, each function block represents a
complex complete function. You can obtain function blocks as follows:

» as a software product from SIEMENS (standard function blocks

on diskette - see /11/ in Chapter 13); with these function blocks
you can generate user programs for fast and simple open loop
control, signalling, closed loop control and logging;

or

« you can program function blocks yourself.

Compared with organization, program and sequence blocks, function

blocks have the following four essentitifferences

OB, PB, SB FB/FX
1. Range of operations
only basic operations - basic operations,
- supplementary operations
- system operations
2. Method of representation
programming and call programming only in AWL
in STL, LAD, CSF
3. Name
name environment not in addition to the number
possible a name with max. 8 chars. ¢
(only number) be assigned
4. Operands

none

formal operands (block
parameters).

When the block is called
formal operands are assigne
actual operands

aln

Function Blocks

2.3.1
Structure of Function
Blocks

Absolute or symbolic
operands

Theblock header (five words) of a function block has the same
structure as the headers of the other STEP 5 block types.

Theblock body on the other hand, has a different structure from the
bodies of the other block types. The block body contains the function
to be executed in the form of a statement list in the STEP 5
programming language. Between the block header and the STEP 5
statements, the function block needs additional memory space for its
name and for a list of formal operands. Since this list contains no
statements for the CPU, it is skipped with an unconditional jump that
the programmer generates automatically. This jump statement is not
displayed when the function block is displayed on the PG!

When a function block is called, only the block body is processed.

You can enter operands in a function block in absolute form

(e.g. F2.5) or symbolically (e.g. MOTORL1). You must store the
assignment of the symbolic operands irmssgnment list before you
enter the operands in a function block (see /3/ in Chapter 13).

Fig. 2-4 shows the structure of a function block in the memory of a
programmable controller.

Block
5 words header
Skip formal
operand v
list —_— [JU —1 word
Name of the FB/FX }4 words [
Formal operand 1 }3 words]Ic'(;f:n;f
operands
Formal operand 2 }3 words
e Block
[- T T body
Formal operand 1 }3 words
1st STEP 5 user operation <+
STEP 5 [T
user
program
BE v

Fig. 2-4 Structure of a function block (FB/FX)

CPU 928B Programming Guide
C79000-B8576-C898-01

Function Blocks

The memory contains all the information that the programmer needs
to represent the function block graphically when it is called and to
check the operands during parameter assignment and programming of
the function block. The programmer rejects incorrect input.

When handling function blocks, distinguish between the following
procedures:

e programming FB/FX
and

» calling FB/FX and therassigning actual valuedo the parameters.

Distinction: "programming”— Whenprogramming, you specify the function of the block. You must

"calling and assigning decide which input operands the function requires and which output

parameters" results it should transfer to the calling program. You define the input
operands and output results as formal operands. These function as
tokens.

When a block isalled by a higher order block (OB, PB, SB, FB, FX),
the formal operands (block parameters) are replaced by actual operands;
i.e.parametersare assigned to the function block.

How to program

IF... THEN...

You want to program a function| Program it as you would a
block "directly", i.e. without program or sequence block.
formal operands.

You want to use formal operand®roceed as explained on the
in a function block. following pages.

Make sure you keep to the
required order:

First program the FB/FX with the
formal operands and keep it on
the PG (offline) or in the CPU
memory (online)

Then program the block(s) to be
called with the actual operands.

D

CPU 928B Programming Guide
C79000-B8576-C898-01 2-27

Function Blocks

2.3.2
Programming Function
Blocks

You can program a function block only in thetatement list"
method of representation. When entering a function block at a
programmer, perform the following steps:

Step

Action

Enter theblock type (FB/FX) and thenumber of the
function block.

Number your function blocks in descending order
starting with FB 255, so that they do not collide with
the standard function blocks. The standard function
blocks are numbered from FB 1 to FB 199.

Enter thename of the function block.

The name can have a maximum of eight characters
and must start with a letter.

If the function block is to process formal operands:
Enter the formal operands you require in the block as
block parameters.

Enter the following information for each formal
operand:

- the name of the block parameter (maximum
4 characters),

- the type of block parameter and the data type of
the block parameter (if applicable)

You can define a maximum of 40 formal operands.

Enter your STEP 5 program in the form aftatement
list (STL). The formal operands are preceded by an
equality sign (e.g. A = X1). They can also be referenced
more than once at various positions in the function blogck.

Terminate your program input with the block end
operation "BE".

CPU 928B Programming Guide
C79000-B8576-C898-01

Function Blocks

Formal operands

CPU 928B Programming Guide
C79000-B8576-C898-01

Note

If you change therder or thenumber of formal operands in the
formal operand list, you must also update all STEP 5 statements
in the function block that referencéocamal operand and also

the block parameter list in the calling block!

Program or change function blocks only on diskette or hard disk

and then transfer them to your CPU!

The following parameter and data types are pggthas the formal
operands of a function block (also knowrbask parameters):

Table 2-5 Permitted formal operands for function blocks
Parameter type Data type
| = input parameter BI/BY/W/D
Q = output parameter
D =data KM/KH/KY/KS/KF/
KT/KC/KG

B = block operation
T =timer
C = counter

none
(no type can be specified)

I, D, B, T or C are parameters that are indicated todfieof the

function symbol in graphic representation.
Parameters labelled with are indicated on théght of the function

symbol.

The data type indicates whether you are working with bits, bytes,
words or double words for | and Q parameters and which data format
applies to D parameters (e.g. bit pattern or hexadecimal pattern).

Function Blocks

233

Calling Function Blocks and
Assigning Parameters to

You can call every function block as often as you want anywhere in
your STEP 5 program. You can call function blocks in a statement list

them or in one of the graphic methods of representation (CSF or LAD).
To call a function block and assign parameters to it, perform the
following steps:
Step Action Reaction on PG
1 Make sure that the called function block exists eitheone
in the PG memory (offline) or in the CPU memory
(online).
2 Enter the call statement for the function block in thafter you enter the call statement
block where the call is to originate. (e.g. JU FB200), the name of the
relevant function block and the forma
You can program a function block call in an |operand list appear automatically.
organization, program or sequence block or
in another function block.
3 Assign theactual operand relevant to this call to |none

each of the formal operands, i.e. you assign
parametersto the function block.

These actual operands can be different for
separate calls (e.g. inputs and outputs for the
first call of FB 200, flags for the second call).
Using the formal operand list, you assign the
required actual operands for each function
block call.

Unconditional/conditional call

Unconditional call

Conditional call

"JU FBn" for FB function blocks or

"DOU FXn" for FX extended function blocks:
the referenced function block is processed
regardless of the previous result of logic
operation (RLO).

"JC FBn" for FB function blocks or

"DOC FXn" for FX extended function blocks:
the referenced function block is only
processed when the result of logic operation
RLO = 1. If RLO = 0 the block call is not
executed. Regardless of whether the block call
is executed or not, the RLO is alsways set to "1".

After the unconditional or conditional call, the RLO can no longer be combined logically. However, it is

carried over to the called function block with the jump and can be evaluated there.

CPU 928B Programming Guide
C79000-B8576-C898-01

Function Blocks

Permitted actual operands Which operands can be assigned@sal opaands is shown in the
following table.

Table 2-6 Permitted actual operands for function blocks

Parameter Data type Actual operands permitted
type
I, Q Bl for an operand I n.m input
with bit address Q n.m output
F n.m flag
BY for an operand IB n input byte
with byte address QB n output byte
FY n flag byte
DL n data byte left
DR n data byte right
PY n peripheral byte
oY n byte from extended periphery
W for an operand
with word address W n input word
QW n output word
FW n flag word
DW n data word
PW n peripheral word
D for an operand OW n word from extended periphery
with double word address
ID n input double word
QD n output double word
FD n flag double word
DD n data double word
D KM for a binary pattern (16 bitsgonstants

KY for two absolute numbers,
one byte each, each in the
range from O to 255

U

KH for a hexadecimal pattern
with a maximum of four
digits

KS for two alphanumeric

characters

KT for timer value (BCD-
coded) units .0 to .3 and
values 0 to 999

KC for a counter value
0 to 999

CPU 928B Programming Guide
C79000-B8576-C898-01 2-31

Function Blocks

Parameter Data type Actual operands permitted
type
Table 2-6 continued:
D KF for afixed point number | Constants
(Cont.) -32768 to +32767
KG for afloating point
numbe
B Data type designation not possible DB n Data block; the operation
C DB nis executed
FB n Function block (permitted
only without parameters)
called unconditnally (JU . .n)
OB n Organization block called
unconditionally (JU . .n)
PB n Program blocks - called
unconditionally (JU . .n)
SB n Sequence blocks - called
unconditionally (JU . .n)
Data type designation not possible T 0to 255 Timer
C Data type designation not possible Z 0to 255 Counter

D 10.1469368 x 18%t0£0.1701412 x 18

Note
S flags arenot permitted as actual operands for function blocks.

After the jump to a function block, the actual operands from the block
then called are used in the function block program instead of the
formal operands.

This feature of programmable function blocks allow them to be used
for a wide variety of purposes in your user program.

CPU 928B Programming Guide
C79000-B8576-C898-01

Function Blocks

Examples

Example 1: the following (complete) example is intended to further
clarify
the programming and calling of a function block and the
assignment of parameters to it. You yourself can easily
try out the example.

Programming the function block FB 202:

FB 202
SEGMENT 1
NAMEEXAMPLE Formal
DECL : INP1 I/Q/D/BITIC: | BI/BY/WID: Bl operand
DECL : INP2 I/Q/D/BITIC: | BI/BY/WID: Bl list
DECL : OUT1 1/Q/D/BIT/C: Q BI/BYW/D: Bl
A= INP1 STEP 5
A= INP2
‘== OUT1 state-
ments
BE
Formal Parameter Data
operands type type

Function block FB 202 is called and has parameters assigned to
it in program block PB 25:

STL method of representation CSF/LAD method of representation

PB 25
SEGMENT 1
: JUFB 202 FB 202
NAME : EXAMPLE "EXAMPLE -
INP1 : 1135 1135 INPIT— OUT1 Q230
N F17.7 INP2 :BE
OUT1 : Q230
\AFZ . BE
Formal Actual
operandes operands

The following operations are executed after the jump to FB 202

‘A 1135
‘A F17.7
= Q230

CPU 928B Programming Guide
C79000-B8576-C898-01 2-33

Function Blocks

Example 2: calling a function block and assigning parameters to it with
the STL and CSF/LAD methods of representation in a program block.

STL method of representation

PB 25
SEGMENT 1
C DB5

: JU FB201
NAME : REQUEST
DATA : DW 1
RST : I 3.5
SET F 2.5
MTIM : T 2
TIME : KT 010.1
TRAN : DW 2
BEC : Q 2.3
LOOP : Q 6.0

: BE
Formal Actual
operands operands

CSF/LAD method of representation

PB 25
SEGMENT 1

FB 201

REQUEST

DW1 — DATA TRAN - DW 2
| 3.5 — RST BEC - Q 23
F 2.5 - SET LOOP — Q 6.0
T 2 - MTIM ‘BE
KT 010.1 = TIME

CPU 928B Programming Guide
2-34 C79000-B8576-C898-01

Function Blocks

2.34

Special Function Blocks Apart from the function blocks thatyou program yourself, you can
order standard function blocks as a finished software product. These
contain standard functions for general use (e.g. signalling functions
and sequence control).
Standard function blocks are assigned numbers FB 1 to FB 199.

If you order standard function blocks, remember the special
instructions in the accompanying description (i.e. areas assigned and
conventions etc.).

The standard function blocks for the S5-134#¥ listed in catalog
ST 57.

Example

Floating point root extractor RAD:GP FB 6

The function block RAD:GP extracts the root of a floating point number
(8-bit exponent and 24-bit mantissa). It forms the square root. The
result is also a floating point number (8-bit exponent and 24-bit
mantissa). The least significant bit of the mantissa is not rounded up
or down.

If applicable, for the rest of the processing, the function block sets
the "radicand negative" identifier.

Numerical range:

Radicand - 0.1469368 Exp. -38 to +0.1701412 Exp. +39
Root +0.3833434 Exp. -19to +0.1304384 Exp. +20
Function: Y = VA

Y =SQRT; A=RADI

Calling the function block FB 6:

In the example, the root is extracted from a floating point number that is
located in DD5 of DB 17 with an 8-bit exponent and a 24-bit mantissa. The
result, another 32-bit floating point number, is written to DD 10. Prior

to this, the appropriate data block must be opened. The parameter VZ
(parameter type: Q, data type: Bl) indicates the sign of the radicand: VZ
=1 for a negative radicand.

Occupied flag words: FW 238 to FW 254,

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01 2-35

Function Blocks

"Floating point root extractor" continued:

STL method of representation LAD method of representation
Seg- | :CDB17
ment : SEGMENT 2
1 - :*'k*

- :JUFB6 FB 6

Seg- NAME :RAD : GP RAD
ment |RADI :DD 5 DD5 RADI —WZ F 15.0 D
2 Z :F15.0 SQRT Bb10
*) SQRT :DD 10 :BE

DD= data double word

*) Must be located in separate segments, since the operation "C DB 17"
in segment 1 cannot be converted to LAD/CSF.

Using FB 0 If you have not programmed organization block OB 1, the system
program calls FB O (provided it is loaded) cyclically instead of OB 1.

Since you have the total operation set of the STEP 5 programming
language available in a function block, programming FB 0 instead of
FB 1 can be an advantage, partilyl when you wish to execute a
short time-critical program.

Note

You should only use FB 0 for programmieglic program
execution (it must not contain parameters).

If both OB 1 and FB 0 are loaded, the system program will onl
call organization blockoB 1 cyclically.

CPU 928B Programming Guide
2-36 C79000-B8576-C898-01

Data Blocks

2.4 Data Blocks

Structure of a data block

Block preheader

CPU 928B Programming Guide

C79000-B8576-C898-01

Data blocks (DB) or extended data blocks (DX) are used to store the

fixed or variable data with which the user program waksSTEP 5
operations are processed in data blocks.

The data of a data block includes the following:
« various bit patterns (e.g. for status of a controlled process)

* numbers (hexadecimal, binary, decimal) for timer values or
arithmetic results

« alphanumeric characters, e.g. for message texts.

A data block (DB/DX) consists of the following parts:
e block preheader (DV, DXV),
» block header

e block body.

Theblock preheaderis created automatically on the hard or floppy
disk of the PG and not transferred to the CPU. It contains the data
formats of the data words entered in the block body. You have no
influence over the creation of the block preheader.

Note

When you transfer a data block from the PLC to diskette or ha
disk, the corresponding block preheader can be deleted. For this
reason, you must never modify a data block with different data
formats in the PLC and then transfer it back to diskette, otherwise
all the data words in the DB are automatically assigned the dati
format you selected in the presets screen form.

Data Blocks

Block header

Block body

Maximum length

Theblock headeroccupies five words in the memory and contains
the following:

 the block identifier

» the programmer identifier

» the block type and the block number
 the library number

« the block length (including the length of the block header).

Theblock body contains the data words with which the user program
works. These data words are in ascending order in the block body,
starting with data word DW 0. Each data word occupies one word
(16 bits) in the memory.

A data block can occupy a total of maximum 32 767 words (including
header) in the CPU memory. When you use your programmer to enter
and transfer data blocks, remember the size of your CPU memory!

CPU 928B Programming Guide
C79000-B8576-C898-01

Data Blocks

24.1
Creating Data Blocks To create a data block, perform the following steps:

Step Action

1 Enter the block type (DB/DX) and data blogkmber
between 3 and 255.

2 Enter individuadata wordsin the data formatyou
require.

(Do not complete your input of the data words with a
BE statement!)

Note

Data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are reserved fo
specific functions and you cannot use them freely for other
functions (see Section 2.4.3)!

Table 2-7 Data formats permitted in a data block

Type Data format Examples

KM Bit pattern 00100110 00111111
KH Hexadecimal 263F

KY 2 Bytes 038,063

KF Fixed point number +09791

KG Floating point number +1356123+12

KS Character ?I1ABCD123-+.,%
KT Timer value 055.2

KC Counter value 234

CPU 928B Programming Guide
C79000-B8576-C898-01 2-39

Data Blocks

2.4.2
Opening Data Blocks

Validity of a data block

Access

You can only open a data block (DB/DXjconditionally. This is
possible within an organization, program, sequence or function block.
You can open a specific data block more than once in a program.

To open a data block, perform the following steps:

IF... THEN...
You want to open 8B data Type in the STEP 5 operation
block "C DB.."
You want to open 8 X data Type in the STEP 5 operation
block "CX DX.."

After you open a data block, all statements that follow with the
operand are&d’ refer to the opened data block.

The opened data block also remains valid when the program is
continued in a different block following a block call.

If a second data block is opened in this new block, the second data
block isonly valid in the newly called block from the point at which it
is called. After program execution returns to the calling block, the old
data block is once again valid.

You canaccesghe data stored in the opened data block during
program execution usintpad or transfer operations(refer to
Chapter 3 for more detailed information).

With abinary operation, the addressed data word bit is used to form
the RLO. The content of the data word is not changed.

With a set/reset operation, the addressed data word bit is assigned the
value of the RLO. The content of the data word may be changed.

A load operation transfers the contents of the referenced data word
into ACCU 1. The contents of a data word are not changed.

A transfer operation transfers data from ACCU 1 to the referenced
data word. The old contents of the data word are overwritten.

CPU 928B Programming Guide
C79000-B8576-C898-01

Data Blocks

Note
Before accessing a data word, you must open the data block ypu
require in your program. This is the only way that the CPU can
find the correct data word.

The referenced data word must be contained in the opened black,
otherwise the system program detects a load or transfer error.

With load and transfer operations, you can only access data word

numbers up to 255!

An opened data block remains valid until one of the following
events occur:

a) a second data block is opened
or
b) the block, in which the data block was

opened, is completed with 'BE’, 'BEC’
or 'BEU'.

Examples

Example 1: transferring data words

You want to transfer the contents of data word
DW 1 from data block DB 10 to data word DW 1 of
data block DB 20.

Enter the following statements:

:.C DB10 (openDB 10)

L Dwil (load the contents of DW 1 into
ACCU 1)

DB 20 (open DB 20)

DW 1 (transfer the contents of ACCU 1
to DW 1)

CPU 928B Programming Guide
C79000-B8576-C898-01 2-41

Data Blocks

Example 2: range of validity of data blocks
(Fig. 2-5)

Data block DB 10 is opened in program block
PB 7 (C DB 10). During the subsequent program
execution, the data of this data block are
processed.

After the call (JU PB 20) program block PB 20

is processed. Data block DB 10, however,
remains valid. The data area only changes when
data block DB 11 (C DB 11) is opened.

Data block DB 11 now remains valid until the
end of program block PB 20 (BE).

After the jump back to program block PB 7,
data block DB 10 is once again valid.

PB 7 PB 20

C DB 10

JU PB 20 C DB 11
BE BE

[Range of validity of DB 10
RN\ Range of validity of DB 11

Fig. 2-5 Range of validity of an opened data block

CPU 928B Programming Guide
2-42 C79000-B8576-C898-01

Data Blocks

2.4.3
Special Data Blocks

DB 0O

DB 1

DB 2

CPU 928B Programming Guide
C79000-B8576-C898-01

On the CPU 948 data blocks DB 0, DB 1, DX 0, DX 1 and DX 2 are
reserved for special functions. They are managed by the system
program and you cannot use them freely for other functions.

e Data block DB 0(see Section 8.3.2)

Data block DB 0 contains the address list with the start addresses
of all blocks that are located in the data block RAM of the CPU.
The system program generates this address list during
initialization (following each POWER UP or OVERALL RESET)
and it is updated automatically when you use a programmer to
change data blocks or generate a new data block.

e Data block DB 1(see Section 10.1.6)

Data block DB 1 contains the list of digital inputs/outputs (P
peripheral with relative byte addresses from 0 to 127) and the
interprocessor communicatioC) flag inputs and outputs that are
assigned to the CPU. If applicable, the block may also contain a timer
field length.

DB 1can have parameters assigned and be loaded as follows:
to reduce the cycle time in single processor operation, since
only the inputs, outputs or timers entered in DB1 are updated.

DB 1 mustbe assigned parameters and loaded as follows:
a) for multiprocessing
b) when IPC flags exist with CPs

» Data block DB 2 (see Section 4.4.3)

You use data block DB 2 to assigh parameters to the closed loop
controller structure R64. The closed loop control function can be
ordered as a software product and operates supported by the
system program.

Data Blocks

DX 0 e Data block DX 0(see Chapter 7)

If you assign parameters to data block DX 0 and load it, you can
change the defaults of certain system program functions (e.g. the
start-up procedure) and adapt the performance of the system program
to your particular application.

DX 1 e Datablock DX 1
Reserved.
DX 2 » Data block DX 2 is used to specify the communication via the

second serial interface. See the "CPU 928B Communication”
Manual for details of assigning parameters to this block (/14/ in
Chapter 13).

CPU 928B Programming Guide
2-44 C79000-B8576-C898-01

Program Execution

Contents of Chapter 3

3.1

3.2

3.3

3.4
341

3.5
351

3.5.2
3.5.3

Principle of Program EXeCULION.ottt e e 3-4
Program Organization.t e 3-5
Storing Program and Data Blocks 3-10
Processing the User Program 3-11
Definition of Terms used in Program Execution.c.oiviune... 3-12
STEP 5 Operations with Examples 3-15
BasiC Operations.ot 3-19
Binary 10giC 0perationst e 3-19
Set/reset OPerationsS.ot 3-20
Load and transfer Operationst 3-21
Timer and counter OPerationsS.ttt e e 3-26
ArithmetiC Operations 3-31
CompPariSON OPEratiONS. ottt et e et e e e 3-32
BIOCK Operationso 3-32
NOP/display/stop Operationsttt e e e e 3-33
Programming Examples in the STL, LAD and CSF Methods of Representation. 3-34
Supplementary OperationsSot e e 3-49
Binary 10giC 0perationst e 3-50
Digital [0gic Operationst 3-50
Set/reset OPerationsS.o e 3-51
Timer and counter OPerationsS.ttt e e 3-52
Load and transfer Operationsottt 3-54
ArithmetiC Operationst 3-56

CPU 928B Programming Guide
C79000-B8576-C898-01 3-1

Contents

3.54 Executive Operationsttt 3-58
JUMP OPEIatiONS o e 3-58
Shift OperationS. o 3-60
CONVErsioN OPEIatiONS ot it et e e e 3-62
Decrement/iNCremeNnt oo e e 3-65
Processing OperationS ottt e e 3-65
Disabling/enabling process interrupts 3-71

3.55 Semaphore Operationst 3-75

CPU 928B Programming Guide
3-2 C79000-B8576-C898-01

Program Execution 3

This chapter is intended for readers who do notyet have any great
experience in using the programming language. The chaptefdhe
deals with the basics of STEP 5 programming and explains in detail
(with examples) the STEP 5 operations for the CPU 928B.

Experienced readers who require more information about a specific
STEP 5 operation listed in the Pocket Guide can refer to the reference
section in 3.5.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-3

Principle of Program Execution

3.1

Principle of Program Execution

System program

from start-up

+

Trigger cycle time

Update inter-
processor comm.
flag inputs
Update process
image inputs
(PII)

Call OB1

Update process
image outputs

(PIQ)

Update inter-
processor comm.
flag outputs

J

Fig. 3-1

You can process your STEP 5 user program in various ways.

Cyclic program execution is most common with programmable
controllers (PLCs). The system program runs through a program loop
(the cycle, refer to Section 3.4) and calls organization block OB 1
cyclically in each loop (refer to Fig. 3-1).

User program
OB 1
PB 20
BE
BE

Principle of cyclic program execution

CPU 928B Programming Guide
C79000-B8576-C898-01

Program Organization

3.2 Program Organization

Program organization allows you to specify which conditions affect the
processing of your blocks and the order in witiely are prcessed.
Organize your program by programming organization blocks with
conditional or unconditional calls for the blocks you require.

You can call additional program, function and sequence blocks in any

combination in the program of individual organization, program,

function and sequence blocks. You can call these one after another or
nested in one another.

For maximum efficiency, you should organize your program to

emphasise the most important program structures and in such a way

thatyou can clearly recognize parts of the controlled system which are

related in the software.

Figs. 3-2 and 3-3 are examples of a program structure.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-5

Program Organization

OB 1
Ju PB A
Ju PB ‘B
JU PB ‘C'
JU PB ‘D'
BE

Fig. 3-2

3-6

PB A’ FB
Operating mode Stop to the system
program EMERGENCY
\ OFF
FB
/' Go to initial
state
PB ‘B’ FB SB
Sequence Control of Sequence
control sequence step
cascade
SB
/Sequence
step
PB ‘C' FB DB
Individual Group P Interface flags
control level initialization ~ of the individual
control
EX elements
" individual
initialization <
L]
L]
FX .
Individual
initialization < >
PB ‘D* FB
Message output Message output
via standard
peripherals
FB DX
Message output Message
. texts
via standard
peripherals <>

Example of the organization of the user program according to the program structure

CPU 928B Programming Guide

C79000-B8576-C898-01

Program Organization

oB 1 PB ‘X‘ FB
Controlled Individual control
system part ‘X
FB
JU PB "X /Closed loop control
FX
Signalling
PB ‘Y* FB
Controlled Sequence control
system part ‘Y*
JU PB 'Y EX
Signalling
FB ‘z° FB
Controlled Closed loop control
system part ‘Z‘
JU PB ‘zZ° FB
/Arithmetic
FB
/Data logging output
BE \

Fig. 3-3 Example of the organization of the user program according to the structure of the controlled system

CPU 928B Programming Guide
C79000-B8576-C898-01 3-7

Program Organization

Nesting blocks Fig. 3-4 shows the principle of nested block calls.
OB 1 PB 5 PB 20
1st STEP 5 Op. Ast STEP 5 Op.
C DB 20
C DB 30 ¢
JU PB 5, = Q 60.6>K JU FB 30
A F 200.5 % NAME: KURV
A 1550«
BE BE BE

%)

Operation to which the program returns

Fig. 3-4 Nested logic block calls

Block addresses A block start address specifies the location of a block in the user
memory (oder DB-RAM). For logic blocks, this is the address of the
memory location containing the first STEP 5 operation (with FB and
FX, the JU operation via the formal operand list); with data blocks, it
is the address of the first data word.

To enable the CPU to locate the called block in the memory, the start
addresses of all valid blocks are entered in the block address list in

data block DB 0. DB 0 is managed by the system program, you cannot
call ityourself.

The CPU stores&turn addressevery time a new block is called. After

the new block has been processed, this return address enables the
program to find the block from which the call originated. The return
address is the address of the memory location containing the next STEP 5
statement after the block call. The CPU also storestdineaddress and

length of the data blockvalid at this location.

CPU 928B Programming Guide
3-8 C79000-B8576-C898-01

Program Organization

Nesting depth You can only nest 62 blocks within one another. If more than 62
blocks are called, the CPU signals an error and goes to the stop mode.

Example of nesting depth

4 Program
level
T 0B 25
| 0B2 —» FB 21
T 0B 13 —» PB 131 9 FB 131
T 0B1 —» Pl > FB1
Nesting depth
b
| | \ \ \ \ \ \ T
1 2 3 4 5 6 7 8 9

Fig. 3-5 Example of block nesting depth

You can determine the nesting depth of your program as follows:

- Add all the organization blocks you have programmed
(in the example: 4 OBs).

- Add the nesting depth of the individual organization blocks
(inthe example:2+2 +1 +0=5).

- Add the two amounts together to obtain the program nesting depth
(in the example: 4 + 5 = nesting depth 9). It may not exceed a value
of 62.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-9

Storing Program and Data Blocks

3.3 Storing Program and Data Blocks

You must load your program into the user memory so that the CPU
can process it. As program memory you can use a plug-in submodule
(optional either RAM or EPROM) and the DB-RAM.

Different storage types D « If you use a plug-ilRAM submoduleyou can transfer your
program directly from the programmer to the CPU.
You can change the contents of a RAM submodule quickly and
easily. A central back-up battery prevents your program being
deleted in the memory if the power goes off.
All programmed blocks are stored in random order in the RAM
(see Section 2.1.5, Fig. 2-2). If you change a block, the sequence
of the blocks in the RAM also changes.

If you use eRAM submodule with a back-up batteryou can
remove it from the CPU without losing data. Having its own
battery protects thesubmodule from loss of data and ensures
that the data is retained until it is required again.

» You can also store your complete program in plugfROM
submodules Your program is completely protected in EPROM
submodules even when the power goes off and no back-up battery
iS necessary.

You cannot change the contents of an EPROM submodule from
the PC. For this reason, data blocks that contain variable data that
have to be changed during the course of your program must be
copied from the EPROM submodule to the data block RAM of the
CPU during the first cold restart following an overall reset. You
must program this function (see special function OB 254 and

OB 255, Section 6.4.6).

» Data blocks DB/DX are written into tiEB-RAM by generating
or copying them. If you transfer data blocks from the PG to the
CPU, they are written to the DB-RAM if the RAM submodule is
full or if an EPROM submodule is plugged in.

Caution
Battery-backed RAM submodules must not be programmed vi
the EPROM interface; this can damage the RAM.

D When storing data blocks, please note the possibility of "alternative loading" - Section 2.1.5.

CPU 928B Programming Guide
3-10 C79000-B8576-C898-01

Processing the User Program

3.4 Processing the User Program

START-UP

CYCLE

CPU 928B Programming Guide
C79000-B8576-C898-01

The complete software on the CPU (consisting of the system program
and the STEP 5 user program) has the following tasks:

» CPU START-UP

» Controlling an automation process by continuously repeating
operations (CYCLE).

« Controlling an automation process by reacting to events
occurring sporadically or at certain times (interrupts) and
reacting to errors.

For all three tasks, you can select special parts of your program to run
on the CPU by programming user interfaces (organization blocks
OB 1to OB 35 - refer to Section 2.2.1).

Before the CPU can start cyclic program execution, an initialization
must be performed to establish a defined initial status for cyclic
program execution and, for example, to specify a time base for the
execution of certain functions. The way in which this initialization is
performed depends on the event that led to a START-UP and on
settings that you can make on your CPU. For more detailed
information, refer to Chapter 4.

You can influence the START-UP procedure of your CPU by
programming organization blocks OB 20, OB 21 and OB 22 or by
assigning parameters in DX O (refer to Chapter 7).

Following the START-UP, the system program goes over to cyclic
processing. It is responsible for background functions required for the
automation tasks (refer to Fig. 3-1 at the beginning of this section).
After the system functions have been executed at the beginning of a
CYCLE, the system program calls organization block OB 1 or
function block FB 0 as the cyclic user program. You program the
STEP 5 operations for cyclic processing in this block.

Processing the User Program

Reactions to interrupts
and errors

3.4.1
Definition of Terms used in
Program Execution

Cycle time

To allow you to specify the reactions to interrupts or errors, special
organization blocks (OB 2, OB6 and OB9 to OB 18 for interrupt
servicing, OB 19 and OB 23 to OB 35 for reactions to errors) are
available on the CPU 928B. You can store an appropriate STEP 5
program in these blocks.

When interrupts or errors are to be processed, the system program
activates the corresponding organization block during cyclic
processing. This means that the cyclic processing is interrupted to
service an interrupt or to react to an error. The nesting of the
organization blocks has a fixed priority (for further information, refer
to Chapters 4 and 5).

In addition to the organization blocks, you can also influence the
reaction of the CPU to interrupt servicing by assigning parameters in
data block DX 0.

Organization blocks OB 1 to OB 39 can be called by the system
program as soon as they are loaded in the program meatswy (

during operation).

If the OBs are not loaded, there is either no reaction from the CPU or
(in the event of errors) it goes to the stop mode (refer also to

Section 5.4).

You can also load data block DX 0 into the program memory during
operation like the organization blocksis, however, only effective
after the next COLD RESTART. If DX 0 is not loaded, the standard
settings apply (refer to Chapter 7).

The cycle begins when the cycle monitoring time is triggered and
ends with the next trigger. The time that the CPU requires to execute
the program between two triggers is called the cycle time. The cycle
time consists of the runtime of the system program and the runtime of
the user program.

The cycle time therefore includes the following:

» the time required to process the cyclic program (system and user
program),

« the time required to process interrupts (e.g. time-controlled
interrupt),

« the time required to process interruptions (errors).

CPU 928B Programming Guide
C79000-B8576-C898-01

Processing the User Program

Cycle time monitoring

Process input and output
image (Pll and PIQ)

Interprocessor communication
(IPC) flags

CPU 928B Programming Guide
C79000-B8576-C898-01

The CPU monitors the cycle time in case it exceeds a maximum value.
The standard setting for this maximum value is 150 ms. You can set the
cycle time monitoring yourself or restart it during user program execution
(refer to DX O/Chapter 7 and special function OB OB 221 and

OB 222/Sections 6.22 and 6.23).

The process image of the inputs and outputs is a memory area in the

internal RAM.
Before cyclic execution of the user program begins, the system
program reads the signal states of the input peripheral modules and

transfers them to the process input image. The user program evaluates
the signal states in the process input image and then sets the
appropriate signal states for the outputs in the process output image.
After the user program has been processed, the system program
transfers the signal states of the process output image to the output
peripheral modules.

Buffering the I/O signals in the process image of the inputs and
outputs avoids a change in a bit within a program cycle from causing
the corresponding output to "flutter”.

The process image is therefore a memory area whose contents are
output to the peripherals and read in from the peripherals per
cycle.

Note
The process imagmly exists for input and output bytes of the "P"
peripherals with byte addresses from 0 to 127!

IPC flags exchange data between individual CPUs (multiprocessing) or
between the CPU and some communication processors.

The system program reads the input IPC flags of the CPU before
cyclic execution of the user program begins. After the STEP 5
program is processed, the system program transfers the output IPC
flags to the coordinator or to the communications processors.

You define the input and output IPC flags when you create data block
DB 1 (refer to Section 10.1.5).

Processing the User Program

Interrupt events

Cyclic program execution can be interrupted by the following:
e process interrupt-driven program processing,

» time-controlled program processing,

« delay interrupt,

 time interrupt clock-controlled.

The cyclic program can be interrupted or even aborted completely by
the following:

» adevice hardware fault or program error,

« operator intervention (using the PC stop function, or setting the
mode selector to "stop", multiprocessor stop MP-STP),

e a stop operation.

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Operations with Examples

3.5 STEP 5 Operations with Examples

A STEP 5 operation consists of the operation and an operand. The
operation specifiewhat the CPU is to do (operation). The operand
specifieswith what an operation is to be executed.

STEP 5 operations can be divided into the following groups:

* basic operations(can be used iall logic blocks),

e supplementary operations,
» executive operationgcan only be used in FB/FX function blocks),

» semaphore operations (can only be used in FB/FX function

blocks).
Accumulators as working The CPU 928B has four accumulators, ACCU 1 to ACCU 4. Most
registers STEP 5 operations use two 32-bit registers (ACCU 1 and ACCU 2)

as the source of operands and the destination for results.

I — High word Lowword ———————
ACSU 1 High byte Low byte High byte Low byte
31 24,23 16 15 73 7 0
ACCU-1-HH ACCU-1-HL ACCU-1-LH ACCU-1-LL
ACCU-1-H ACCU-1-L

The STEP 5 operation to be carried out affects the accumulators, e.g.:

» ACCU 1is always the destination in load operations. A load
operation shifts the old contents of ACCU 1 to ACCU 2 (stack
lift). Accumulators 3 and 4 are not changed by any load operations.

D analogous for ACCU 2 to ACCU 4

CPU 928B Programming Guide
C79000-B8576-C898-01 3-15

STEP 5 Operations with Examples

Condition codes

Bit condition codes

» Arithmetic operations combine the contents of ACCU 1 with those
of ACCU 2, write the resultto ACCU 1 and transfer the contents
of ACCU 3 to ACCU 2 and the contents of ACCU 4 to ACCU 3
(stack drop). In 16-bit fixed point arithmetic, only the low word or
ACCU 3 is transferred to the low word of ACCU 2 and the low
word of ACCU 4 to the low word of ACCU 3.

* When a constant is added (ADD BF/KF/DH) to the contents of
ACCU 1, the accumulators 2, 3 and 4 are not changed.

STEP 5 operations either set or evaluate condition codes. The condition
codes are written to a condition code byte. Two groups of condition
codes can be distinguished: condition codes of digital operations (word
condition codes - bits 4 to 7 in the condition code byte) and condition
codes from binary and executive operations (bit condition codes - bits 0
to 3 in the condition code byte). You can see how the various condition
codes are influenced or evaluated by STEP 5 operations be referring to
the operation list (see /1/ in Chapter 13).

You can display the condition code byte on a programmer using the
"STATUS" online function (refer to Section 11.2.3). The byte has the
following structure:

Word condition codes Bit condition codes

cCi1| cCco, ov (ON) OR STA| RLO ERAB
Bit 7 6 5 4 3 2 1 0

e ERAB First bit scan

A logic operation sequence containing binary operations always
beginswith thefirst bit scan, following which anew RLO is

formed. The bit condition codeRAB = 1 is then set. While the
remaining logic operations in the sequence are being performed,
ERAB remains set to 1 and the RLO cannot be changed by these
logic operations.

The active sequence of logic operationgiminated by a binary
set/reset operation (e.g. S Q 5.0). The set/reset operation sets
ERAB to 0; the RLO can be evaluated (e.g. by RLO-dependent
operations) but can no longer be combined logically. The next
binary logic operation following a binary set/reset operation is
once again afirst bit scan.

CPU 928B Programming Guide
C79000-B8576-C898-01

STEP 5 Operations with Examples

Example of ERAB

S Q 77 Last operation of the pre-
vious logic operation
sequence

A 110 ERABis setto’l’,

: the new RLO is formed by

: an AND operation

O 1 63 The RLO is influenced by

: an OR operation

AN 1 21 The RLO is influenced by

: an AND NOT operation.

S Q 24 ERAB is setto 'O,

: the sequence is now complete

JJC FB 150 The function block is called

: dependent on the RLO.

Other bit condition codes RLO Resultoflogic operation
This is the result of bit logic operations. It is the truth statement for
comparison operations (refer to operations list, binary logic
operations or comparison operations).

e STA Status

For bit operations, this indicates the logical status of the bit just
scanned or set. The status is updated in binary logic operations -
except for A(, O(,), O and for set/reset operations.

e OR Or

Internal CPU bit for handling "AND before OR" logic operations.

Word condition codes e OV Overflow

This indicates whether the permissible number range was exceeded
during the d@thmetic opeation just completed.

e OS Stored overflow

It can be used in several arithmetic operations to indicate whether an
overflow occurred at any point during the operations.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-17

STEP 5 Operations with Examples

e CClandCCO

These are the result condition codes that you can interpret from the
following table:

Note

To evaluate the condition codes dilg, compaison and jump
operations are available (refer to Sections 3.5.1 and 3.5.3).

Table 3-1 Result condition codes of STEP 5 operations
Word Arith- Digital Com- Shift For Jump
condition codes metical logic parison operations SED, operations
operations | operations | operations SEE executed
CC1 CCo
0 0 Result Result ACCU 2 Shifted Semaphore
=0 =0 = bit is JZ
ACCU 1 =0 set
0 1 Result ACCU 2 JM
<0 - < - - JN
ACCU 1
1 0 Result Result ACCU 2 Shifted Semaphore JP
>0 z0 > bit is JN
ACCU 1 =1 set
or
enabled
1 1 Division IN
by O - - — —
Note

When a change of level takes place, e.g. servicing a tivterdlipt,

all accumulators and the bit and word condition codes (RLO etc.) are

saved and loaded again when the interrupted level is resumed.

CPU 928B Programming Guide

C79000-B8576-C898-01

Basic Operations

3.5.1
Basic Operations

Binary logic
operations

You can use the basic operationslinogic blocks and all methods of
representation (STL, LAD, CSF).

Table 3-2 Binary logic operations

Operation Operand Function
A AND logic operation after scanning for signal state "1"
0 OR logic operation after scanning for signal state "1"
| 0.0to127.7 of an input in the PII
Q 0.0to 127.7 of an output in the PIQ
F 0.0to 255.7 of a flag bit
S 0.0to 4095.7 of an S flag bit
D 0.0to 255.15 of a data word bit
T 0Oto 255 of a timer
C 0to 255 of a counter
AN AND logic operation after scanning for signal state "0"
ON OR logic operation after scanning for signal state "0"
| 0.0to 127.7 of an input in the PII
Q 0.0to127.7 of an outputin the PIQ
F 0.0to 255.7 of a flag bit
S 0.0to 4095.7 of an S flag bit
D 0.0to 255.15 of a data word bit
T Oto 255 of atimer
C 0to 255 of a counter
@] - Combine AND operations through logic OR
U(- ANDiIng of expressions in parentheses
o] ORIing of expressions in parentheses
) Close parenthesis (to complete the bracketed expression)
Maximum of 8 levels are permitted, i.e. 7 opened brackets

RLO formation

CPU 928B Programming Guide
C79000-B8576-C898-01

The binary logic operations generate the result of logic operation
(RLO).

At the beginning of a logic sequence, the RLO only depends on the
signal state scanned (first scan) and not on the type of logic operation
(O =0R, A=AND).

Basic Operations

Within a sequence of logic operations, the RLO is formed from the type
of operation, previous RLO and the scanned signal state. A sequence of
logic operations is completed by an operation (efyeset operations)
which retains the RLCHRAB = 0). Following this, the RLO can be
evaluated but cannot be further combined.

Example
Program Status RLO ERAB
= Q 00 |0 0 0 «— RLO retained
A Il 10 |1 —=1 1 «— first bit scan
A 111 1=—D1 1
A 1 12 =0 |1
= Q 01 |0 0 0 «— RLO retained, end of
the logic operations
sequence
Set/reset operations
Table 3-3 Set/reset operations
Operation Operand Function
S Setif RLO=1
R Resetif RLO=1
| 0.0to127.7 an input in the PII
Q 0.0to 127.7 an output in the PIQ
F 0.0to 255.7 a flag
S 0.0to 1023.7 an S flag
D 0.0to 255.15 a bit in the data word
= The RLO is assigned to
| 0.0to127.7 an input in the PII
Q 0.0to 127.7 an output in the PIQ
F 0.0to 255.7 a flag
S 0.0to 1023.7 an S flag
D 0.0to 255.15 a bit in the data word

CPU 928B Programming Guide
C79000-B8576-C898-01

Basic Operations

Load and transfer

operations
Table 3-4 Load and transfer operations/part 1
Operation Operand Function
L Load
T Transfer
1B Oto 127 an input byte from/to the PII
W Oto 126 an input word from/to the PII
ID Oto 124 an input double word from/to the PII
QB Oto 127 an output byte from/to the PIQ
QW O0to 126 an output word from/to the PIQ
QD O0to 124 an output double word from/to the P1Q
FB 0Oto 255 a flag byte
FW Oto 254 a flag word
FD Oto 252 a flag double word
SY 0to 1023 an S flag byte
SW 0to 1022 an S flag word
SD 0to 1020 an S flag double word
DR 0Oto 255 the right byte of a data word from/to DB,DX
DL 0Oto 255 the left byte of a data word from/to DB,DX
DW 0Oto 255 a data word from/to DB, DX
DD O0to 254 a data double word from/to DB, DX
PY Oto 127 a peripheral byte of the digital inputs/outputs (P area)
PY 128to 255 a peripheral byte of the analog or digital inputs/outputs
(P area)
PW 0to 126 a peripheral word of the digital inputs/outputs (P area)
PW 128to 254 a peripheral word of the analog or digital inputs/outputs
(P area)
OY O0to 255 a byte of the extended 1/O area (O area)
OW 0Oto 254 a word of the extended 1/O area (O area)

CPU 928B Programming Guide

C79000-B8576-C898-01

Basic Operations

Table 3-5 Load and transfer operations/part 2
Operation Operand Function
L Load
KB 0to 255 a constant, 1 byte
KS 2ASCI a constant, 2 ASCII characters
characters
KF -32768 to a constant as fixed point number
+32767
K Y a constant as floating point number
KH Oto FFFF a constant as hexadecimal number
DH Oto a double word constant as a hexadecimal number
FFFF FFFF
KM 16-bit pattern a constant as bit pattern
KY 0to 255 for a constant, 2 bytes
each byte
KT 0.0to 999.3 a constant timer value (in BCD)
KC 0to 999 a constant counter value
T Oto 255 a timer, binary coded
C Oto 255 a counter, binary coded
LC Load
T Oto 255 a timer
C 0to 255 a counter
in BCD
D 40,1469368 x 1% t0 £0,1701412 x 1%
Load operations Load operations write the addressed value into ACCU 1. The

former contents of ACCU 1 are saved in ACCU 2 (stack lift).

Transfer operations Transfer operations write the contents of ACCU 1 to the addressed
memory location.

CPU 928B Programming Guide
3-22 C79000-B8576-C898-01

Basic Operations

Examples of load and
transfer operations

Example 1:

Fig. 3-6 illustrates loading/transferring a byte, word or double word
from/to a memory area organized in bytes (PII, PIQ, flags, 1/O).

.LIBi load byte i of the PIl into ACCU-1-LL
'LIWj load bytes jand j+1 of the PIl into ACCU-1-L
'LFDk load flag bytes k to k+3 in ACCU 1

7 0 31 23 15 7 0
0d 091 09 | ACCU 1
A
L IBIi
T T IB |
Addresses l 31 23 15 7 0
ascending 0 0l j j+1 ACCU 1
order y y
j L IWj
[+ 1 T IW |
31 23 15 7 0
k k+1 k+2 k+3 ACCU 1
A A A A
k < L FD k
k+1 T FD k
k + 2
k+3
1) only with load operations
Fig. 3-6 Load and transfer operations in a byte-oriented memory area
CPU 928B Programming Guide
C79000-B8576-C898-01 3-23

Basic Operations

Example 2:

Fig. 3-7 illustrates the loading/transfer of a byte, word or double word

from/into a memory area organized in

words .

'L DR i load the right byte of data word i into ACCU-1-LL
'L DL j load the left byte of data word j into ACCU-1-LL
:.L DW k load data word k into ACCU-1-L

'L DD | load data words | and I+1 into ACCU 1

15 0 3l 23 15 7 0
0y 0y 0y ACCU 1
L DRI
right byte T DRI
Data word i
Addresses 31 23 15 7 0
in i 1 1 i
ascending 0 0 09 j ACCU 1
order
L DLj
left byte < T DLj
Data word |j 3 15 0
() k ACCU 1
A
L DW k
k T DWk
3l 15 0
[+1 ACCU 1
A
L DD |
| T DD |
[+1
Dlonly with load operations
Fig. 3-7 Load and transfer operations in a word-oriented memory area

Note

Load operationsdo not affect theondition codes
Transfer operations clear theOS bit.

When abyte orword isloadedtheextra bits arecleared

in ACCU 1.

CPU 928B Programming Guide

C79000-B8576-C898-01

Basic Operations

Addressing 1/0Os You can use load and transfer operations to address the 1/O
peripherals as follows:

» directly using the following operations:
L./T.. ..PY,.PW,..QY, .OW
or

e usingthe process image ith the following operations:

L./T.. .IB,..I\W, .ID, .QB, ..QW, ..QD

and with logic and set/reset operations

Note

If you use the transfer operations T PY 0 to 127 and T PW 0 to
126, the process output image is updated at the same time.
Exception: command output is disabled by the STEP 5 operation
BAS (refer to Section 3.5.4).

Note the following points about I/O peripherals:

« A process input/output image exists for 128 input and 128 output
bytes of the P peripherals with byte addresses from 0 to 127.

» No process image exists for the entire area of the O peripherals
and the P peripherals with relative byte addresses from 128 to 256.
(For more information on address space allocation see
Section 8.2.2).

» 1/O modules with addresses of the O peripherals can only be
plugged into expansion units (not in the central controller).

» In oneexpansion unit, you can use either only P peripherals or
only O peripherals.

Caution

If you use relative addresses of the O peripherals in an expansjon
unit, you can no longer use these addresses for I/O modules in the
central controller (this would result in double addressing).

CPU 928B Programming Guide
C79000-B8576-C898-01 3-25

Basic Operations

Timer and counter

To load a timer using a start operation or a counter using a set

operations operation, you must first load the value in ACCU 1.
The following load operations are preferable:
For timers: LKT,L IW,L QW, L FW,L DW, L SW.
For counters: LKC, L IW, L QW, L FW, L DW, L SW.
Starting aimer with the selected timer value requires an RLO signal
change.
A counter is set or started with the selected counter value when a
positive-going RLO signal edge is detected.
The following table indicates the signal edge change with
corresponding arrows.

Table 3-6 Timer and counter operations

Operation |Operand RLO |Function
1)

SP T 0 to 255 1 |Start a timer as a pulse

SE T 0 to 255 1 |Start a timer as extended pulse

SD T 0 to 255 t | Start a timer as ON delay

SS T 0 to 255 T |Start a timer as stored ON delay

SF T 0 to 255 ! |Start a timer as OFF delay

R T 0 to 255 1 |Resetatimer

S C 0to 255 1 |Set a counter (BCD number from 0 to 999)

R C 0to 255 1 |Reseta counter

Cu C Oto 255 1 Count up

CD C 0to 255 T |Count down

D positive-going edge 1():
negative-going edge 1():

signal change from '0’ to '1’
signal change from '1’ to '0’

When executing the timer or counter operations SP T, SE T, SD T,
SST,SF T and S C the value in ACCU 1 is transferred to the timer or
counter (as with the transfer operation) and the appropriate operation
is started.

CPU 928B Programming Guide
C79000-B8576-C898-01

Basic Operations

Timer value

Example

CPU 928B Programming Guide
C79000-B8576-C898-01

With the operation L KT, you can loadiaer value directly into

ACCU 1 or indirectly from a flag or data word. The value must have
the following structure (with L KT, you specify the time base after the
period in the operand as shown below):

Bit no.
15/14)13]12|12/10/ 9|8 |7 |6 |5 4|3 |2 |10

A A
N N N
102 10t 10°
N
Timer value 0 ... 999 in BCD

N

Time base specified in BCD: 0: 0.01 sec
1: 0.1 sec
2: 1 sec

3: 10 sec

These bits are irrelevant
(i.e. they are ignored when
the timer is started)

You want to set a time of 127 sec.:

Bit assignment:

‘x|x|1/0/0]olol1/olol1]o]ol1|1]1
NP NS R N S
2 1 2 7

\
Timer value 127

Time base 1 sec

Irrelevant

Note
The start of each timer is liable to an inaccuracy of 1 time base!
When using timers, you should therefore select the smallest
possible time base (time base < timer value):

Example:
timevalue4s nott 1sx4 inaccuracy: 1's
but: 0.01sx400 inaccuracy: 0.01s

Basic Operations

Counter value With the operation L KC, you can load@unter valuedirectly in
ACCU 1 or indirectly from a flag or a data word. The value must have
the following structure:

Bit no.
15/1413)12]11/10/ 9|8 |7 |6 |5 |4 |3]2 |10
— N
102 10t 100
N y

N
Counter value 0 ... 999

specified in BCD

These bits are irrelevant,
(i.e. they are ignored when
the counter is set)

Example

You want to specify a counter value of 127:

Bit assignment:

Counter value 127

Irrelevant

In the timer or counter itself, the value is in binary code. If you want to
scan the timer or counter, you can load the actual timer or counter
value into ACCU Mirectly orin BCD code

CPU 928B Programming Guide
3-28 C79000-B8576-C898-01

Basic Operations

Further examples of timer
and counter values
Loading timer values directly:

Timer value
AL

J

"L T10" Loads the binary timer value of timer T 10
directly into ACCU 1

The time base is not loaded.

Loading counter values directly:

Counter value
N

J

"L C10™ Loads the binary counter value of counter C 10
directly into ACCU 1

CPU 928B Programming Guide
C79000-B8576-C898-01

Timer T 10

ACCU 1

Counter C 10

ACCU 1

Basic Operations

Loading timer values in BCD code:

Time base Timer value
o frsaz] e 0| Timer T 10
‘Binary » BCD‘
77777777 0‘13 12‘ 11 ‘ 7 a ‘ 3 o ‘ ACCU 1
102 10?1 10°
Time base Timer value

"LC T 10".Loads the timer value and time base of
timer T 10 into ACCU 1 in BCD

The time base is also loaded.

Loading counter values in BCD code:

Counter value

‘9 O‘ Counter C 10
‘Binary » BCD‘
'O’ ‘11 ‘7 4‘3 O‘ ACCU 1
"""""""""""""""" PN PN
102 10?1 10°

Counter value in BCD

"LC C 10" Loads the counter value of counter C 10
into ACCU 1in BCD

If you load values in BCD, status bits 14 and 15 of the timer or 12 to
15 of the counter are not loaded. They have the value 0 in ACCU 1.
The value in the ACCU can now be processed further.

CPU 928B Programming Guide
3-30 C79000-B8576-C898-01

Basic Operations

Arithmetic operations

Table 3-7 Arithmetic operations

Operation Operand Function

+ - Add two fixed point numbers (16 bits)

Subtract one fixed point number from another (16 bits)
Multiply two fixed point numbers (16 bits)

Divide one fixed point number by another (16 bits):

guotient in ACCU-1-L, remainder in ACCU-1-H

M T T

Add two floating point numbers (32 bits)

Subtract one floating point number from another (32 bhits)
Multiply two floating point numbers (32 bits)

Divide one floating point number by another (32 bits)

x
OO0

Arithmetic operations logically combine the contents of ACCU 1 and
ACCU 2 (e.g. ACCU 2 - ACCU 1). The result is then contained in
ACCU 1. An arithm#éc operation changes thathmetic egisters as
follows (in fixed point operationsnly the low word):

ACCU 1 ACCU 2 ACCU 3 ACCU 4

before: <ACCU 1> <ACCU 2> <ACCU 3> <ACCU 4>
after: <result> <ACCU 3> <ACCU 4> <ACCU 4>
Note

Within thesupplementary operations there are operations for
subtraction andaddition of double word fixed point numbers
In addition, you can use tlEN T operation from the set of
supplementary operations for loading ACCU 3 and ACCU 4 (see
Section 3.5.3).

CPU 928B Programming Guide
C79000-B8576-C898-01 3-31

Basic Operations

Comparison operations

Table 3-8

Comparison operations

Operation

Operand

Function

Compare for equal to

Compare for not equal to

Compare for greater than

Compare for greater than or equal to
Compare for less than

Compare for less than or equal to

..F: compare two fixed point numbers (16 bits)
...D: compare two fixed point numbers (32 bits)
...G: compare two floating point numbers (32 bits

Block operations

Table 3-9 Block operations
Operation Operand Function
JuU Jump unconditionally
JC Jump conditionally (only when RLO = 1)
OB 1to39 7Y to an organization block
OB 110to 255 to a system program special function
PB 0to 255 to a program block
FB 0Oto 255 to an FB function block
SB 0to 255 to a sequence block
DOU Jump unconditionally
DOC Jump conditionally (only when RLO = 1)
FX 0to 255 to an FX function block
BE - Block end
BEC Block end, conditional (only when RLO = 1)
BEU Block end, unconditional
C DB 3to 255 Call a DB data block
CX DX 3to 255 Call a DX data block
G DB 3to 255 Generate data block DB
GX DX 3to 255 Generate data block DX
(ACCU 1 must contain the number of data words
— maximum 4091 — that the new block is to have)

1)

only for test purposes!

CPU 928B Programming Guide
C79000-B8576-C898-01

Basic Operations

G DB/GX DX Generating a data block

The operation G DBx generates a DB data block with the number x
(3<x < 255) in the user memory of the CPU. The content of the data
block isnot assigned the value 0, i.e. the data words can have any
contents.

Before programming this statement, you must store the number of
data words that the new DB is to have in ACCU-1-L. The operation
"G DB" or "GX DX" creates the block header. A data block generated
in this way (vithout block header) can occupy a maximum of 4091
words. You can generate longer data blocks using OB 125.

If the data block already exists, the length of the DB is not permitted
or there is not enough space in the DB-RAM, the system program
callsOB 31 If this is not loaded, the CPU goes to the stop mode.

The GX DXx operation generates a DX data block in the DB-RAM
and is otherwise the same as G DBXx.

NOP/display/stop operations

Table 3-10 NOP/display/stop operations

Operation Operand Function
NOPO - No operation
NOP1 No operation
BLD 0 to 255 Display generation operation for the PG:
the CPU handles the operation like a no operation
STP - CPU changes to soft STOP.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-33

Programming Examples in the STL, LAD and CSF Methods of Representation

3.5.2

Programming Examples in
the STL, LAD and CSF
Methods of Representation

Logic operations

AND operation

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
111 1317 1.1 113 117 Q35 [
! T \ 11.1 A 11.1 : > 11.3
‘ \ A 113 11.7 Q35
11.3

& A 117
= Q3.5

11.7
‘ Q3.5
Q3.5

Output Q 3.5 is "1" when all inputs are "1" simultaneously

Output Q 3.5 is "0" if any of the inputs has signal state "0"

The number of scans and the sequence of the logic

statements are optional

CPU 928B Programming Guide
C79000-B8576-C898-01

Programming Examples in the STL, LAD and CSF Methods of Representation

Logic operations
(continued)

OR operation

STEP 5 representation

Logical/circuit diagram

Statement Ladder Control system
list diagram flowchart
11.2 Q3.2 112 —
112 1.715
R e i > |17 =
112 11.7 115 o 117 115 — — Q3.2
11.7
=1
= O 115
Q32 %

‘ = Q32

=
o

o]
w
N

N

Output Q 3.2 is "1" when at least one of the inputs is "1"

Output Q 3.2 is "0" when all inputs have the signal state
state "0" simultaneously

The number of scans and sequence of programming is optional

AND-before-OR operation

STEP 5 representation
Logical/circuit diagram
ogical/circuit diagra Statement Ladder Control system
list diagram flowchart
115116 114113 A 115 115 11.6 Q3.1 11
—r—r ' '
1] = |
\I1.5 \|1.4 A 116 -1
& & 114 113 =
1.6 \113 o — 1
11.7 Q31
A 114
Q31 A 113
= Q31
Q3.1

Q 3.1is "1" when at least one AND condition is satisfied

Q 3.1is "0" when no AND condition is satisfied

CPU 928B Programming Guide
C79000-B8576-C898-01 3-35

Programming Examples in the STL, LAD and CSF Methods of Representation

Logic operations
(continued)

‘ OR-before-AND operation

/1st example

STEP 5 representation

Logical/circuit diagram
g g Statement Ladder Control system
list diagram flowchart
16.0
16.0 16.1 16.2 16.3 16.0 16.2 16.3 16.0 Q21 16.0
| | | o - '
A 161
16.2 16.1 16.1
Al
16.1 %
O 162 16.3
16.3
O 163 % 162
Q21)
= Q21

Output Q 2.1 is "1" when input 1 6.0 or input | 6.1 and one
of the inputs 1 6.2 or | 6.3 has signal state "1"

Output Q 2.1 is "0" when input | 6.0 has signal state "0"
and the AND condition is not satisfied

OR-before-AND operation

/2nd example

Logical/circuit diagram

STEP 5 representation

Statement Ladder diagram Control system
list flowchart
Al
114115 120121 o 114 114 12.0 Q3.0 14
I I “ 9 EAE 4
11.4 115 o 115 115
=1 =1 11.5 121
> 3EY
12.0 \l121 Al 12.1 - Q3.0
O 121
3.0
°)
= Q3.0

Output Q 3.0 is "1" when both OR conditions are satisifed

Output Q 3.0 is "0" when at least one OR condition is not satisfied

CPU 928B Programming Guide

C79000-B8576-C898-01

Programming Examples in the STL, LAD and CSF Methods of Representation

Logic operations
(continued)

‘ Scan for signal state "0"

STEP 5 representation

Logical/circuit diagram

Statement Ladder Control system
list diagram flowchart
115 116 * 115 11.6 Q3.0 115
14 n o O
AN 116 116 -0 |— Q30
116
& = Q3.0
Q3.0

Output Q 3.0 is "1" only when input | 1.5 has signal state "1"
(normally open contact activated) and input | 1.6 has signal
state "0" (normally closed contact activated)

Set/reset operations

RS flip-flop for a latching signal output

STEP 5 representation
Logical/circuit diagram
ogicalicireuit diagra Statement Ladder Control system
list diagram flowchart
114 127 H Y 12.7 Q35 Q3.5
[114 127 S Q35 s 127 s
R 's A 114 |14P 114 g o
‘ R Q35 :
1,1 035
10 FHr o~ — <
Q‘S.S

Signal state "1" at input | 2.7 sets the flip-flop

(signal state "1" at output Q 3.5).

If the signal state at input | 2.7 changes to "0", the

state of output Q 3.5 is retained (i.e. the signal is latched).

Signal state "1" at input | 1.4 resets the flip-flop
(signal state "0" at output Q 3.5).

If the signal state at input | 1.4 changes to "0", the
state of Q 3.5 is retained.

When the set signal (input | 2.7) and the reset signal
(input | 1.4) are applied at the same time, the scan
operation programmed last (in this case Al 1.4)

remains in effect for the rest of the program (reset priority).

CPU 928B Programming Guide
C79000-B8576-C898-01 3-37

Programming Examples in the STL, LAD and CSF Methods of Representation

Set/reset operations
(continued)

\ RS flip-flop with flags

STEP 5 representation

Logical/circuit diagram

Statement Ladder Control system
list diagram flowchart
113 1256 A 126 126 FL17 F17
11.3 12.6 S F1.7 S 12.6 — 'S
R 's A 113 113 —R Q|
11 c1q R F17 113
o R o— — <

F1.7

Signal state "1" at input | 2.6 sets the flip-flop.

If the signal state at input | 2.6 changes to "0", the

signal state of the flag is retained, i.e. the signal is latched.

Signal state "1" at input | 1.3 resets the flip-flop.

If the signal state at input | 1.3 changes to "0", the
signal state of the flag is retained.

When the set signal (input | 2.6) and the reset signal
(input 1 1.3) are applied at the same time, the scan
operation last programmed (in this case Al 1.3) remains
in effect for the rest of the program (reset priority).

CPU 928B Programming Guide
C79000-B8576-C898-01

Programming Examples in the STL, LAD and CSF Methods of Representation

Set/reset operations
(continued)

Simulation of a momentary contact relay (one shot)

‘ o STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
|17 A 117
| 117 AN Fa0 117 F4.0 F20 1.7 — ¢
. - k20 |0 BT
imB \ F2.0 A F20 F4.0 ¢ | E20
I S F 4.0
F2.0 AN 17 Foo F40 F4.0
R Fao 1 Es F20—s
1.7 11T T riIr 1.7
F4.0 I I I I R — VAR e 117 <dR Q|
F 2.0 ‘ ‘ ‘ ‘ ‘

On each leading edge of the signal at input | 1.7,
the AND condition (Al 1.7 and AN F 4.0) is satisfied,;
the RLO is "1". This sets flags F 4.0 (edge flag) and
F 2.0 (pulse flag).

In the next processing cycle, the AND condition
Al 1.7 and AN F 4.0 is not satisfied, since flag F 4.0
has already been set.

Flag F 2.0 is reset.
Flag F 2.0 therefore only remains "1" for one program

run.
Binary scaler (binary divider)
STEP 5 representation
Logical/circuit diagram
ogical/circuit diagra Statement Ladder Control system
list diagram flowchart
A 1 1.0
11.0 AN F1.0 %'L)Hl}o%—glﬁi 11.0 — &
' = F1.1 F1.0-9 I—F1.1
‘v‘ M1.0 A F1l1 F1.1 F1.0
5 F1.0
L m11 iN ::1-8 H H F1.1_Is
. 11.0 11.0 9R QI—
R F 1.0 } /E R Ql— ' = =]
F20 A F11
Q3.0. A Q3.0 F1.1 Q3.0 F2.0 Fll— &
= F20 HFF——)— Q30— [-F20
0 A FL1 F1.1 Q3.0 F2.0 Q3.0 —
AN Q3.0 : . . . F1.1 — 8
11.0 ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ AN F20 % H/H/[i‘s 03.0 9 Q3.0
S Q3.0 F2.0 F2.0 9 —1S
Q3.0 Q 223'_% HF———Rr o F2.0 R QI

The binary scaler (output Q 3.2) changes its state

each time input | 1.0 changes its signal state from 0
to 1 (leading edge). Therefore, only half the input
frequency appears at the output of the memory cell.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-39

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations

Pulse timer

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
130 A I 3.0 13.0 T T1
13.0 L KT 102 | o [—1rL 13.0 — 1.1
SP T 1 KT KT
R S AN | 3.0 1
10s R T 1 0.2 — v BI — QWO 10.2— {1y Bl — Qwo
i |71 > L T o1
T QW 0 DE[— QW2 DE— QW2
Q4.0 LC T 1
T QW 2 13.0
Q4.0 Q4.0
A T 1 Q4.0
= Q 4.0 MiR Q4<>* —R Q—1=]
The timer is started during the first scan if the RLO is "1".
Subsequent scans with an RLO of "1" do not affect the
timer.
If the RLO is "0", the timer is reset (cleared).
The scan AT or OT produces the signal "1" as long
as the timer is running.
KT 10.2:
The timer is loaded with the specified value (10). sof L [
Q4.0

The number to the right of the decimal point indicates

the time base:
0=0.1sec 2=1sec
1=0.1sec 3=10sec

Bl and DE are digital outputs of the timer. The time at
output Bl is in binary code. The time at DE is in BCD code

with time base.

=T

CPU 928B Programming Guide
C79000-B8576-C898-01

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations (continued)

Extended pulse timer

STEP 5 representation
Logical/circuit diagram
9 9 Statement Ladder Control system
list diagram flowchart
N
13.1 A I 31 13.1 T2 T2
L IW 15 % [—1ILV 131 —H1rLVv
13.1 SE T 2
A T 2
R 5] 2> = Q 41 W15 —Tw Bl |~ W15 JTW Bl [~
1L 72 DE [~ DE -
>—\T2 et Q4.1
% 1R o —{)+ R Q=]
Q4.1 Q4.1

The timer is started during the first scan if the RLO is
"1,

An RLO of "0" does not affect the timer. (815 ~ (B1§
3 4‘3 0‘7 4‘3 0‘
2 1 0

. an 0% | 10% 10
The scan AT or OT produces a signal "1" as long as _ :
. . . Time Timer value
the timer is running. base
IW 15:
Set the timer with the value of the operand I, Q, F or 13.1
D in BCD code (in this example, input word 15). Q41
T |~ T |+—

CPU 928B Programming Guide
C79000-B8576-C898-01 3-41

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations (continued)

ON-delay timer

Logical/circuit diagram

STEP 5 representation

Statement

list

Ladder
diagram

Control system
flowchart

= |13

Q4.2

—+ >\ T3

Q4.2

A
L
SD

AN
R
A

I 35
KT 9.2

3.5

4.2

13.5

T3

KT9.2

13.5

=4 H

T——0

T™W Bl

DE

Q4.2

(O

T3
135 = T———O

KT9.24TV Bl |~

DE—

The timer is started during the first scan if the RLO
is "1". An RLO of "1" during subsequent scans does

not affect the timer.

When the RLO is "0", the timer is reset (cleared).

The scan AT or OT produces the signal "1" when the
timer has elapsed and the RLO is still applied to the

input.

KT 9.2:

The timer is loaded with the specified value (9). The

number to the right of the decimal point indicates

the time base:

0=0.1sec
1=0.1sec

2=10sec
3=10sec

13.
Q4.2

5
> T |«

CPU 928B Programming Guide

C79000-B8576-C898-01

Programming Examples in the STL, LAD and CSF Methods of Representation

Timer operations (continued)

Stored ON-delay timer

STEP 5 representation
Logical/circuit diagram
9 9 Statement Ladder Control system
list diagram flowchart
T4 T4
132 133 A | 33 133
‘ ‘ % PT’—‘S 183 41— s
R s L KT 202
20.2— TV Bl — 202 — TV Bl —
20s 0 - SS T 4
—
Al 3.2 DE| — DE| -
QL?) R T 4 132 943 Q43
' — Hr o |32+ Q=]
A T 4
= Q 43

The timer is started during the first scan if the RLO is "1".
An RLO of "0" does not affect the timer. 'ﬁﬁg—‘_‘—
The scan AT or OT produces the signal "1" when the Q43 [

timer has elapsed. The signal state does not change

to "0" until the R T operation resets the timer.

OFF-delay timer

STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
T5 T5
13.4 A | 34 13.4
‘ %EO)—{T 134 o 1 7
R S L KT 10.1
10.1—Tv Bl | — 10.1 TV Bl [
0 1 s T5 13.4 SF T 5
—t
‘ A T 5 DE | — DE |-
44 = 43 Q4.4 Q44
Q AT = e —r o R Q7]
Q4.4

When the RLO at the start input changes from "1" to
"0", the timer is started. It runs for the length of time 134 M ML
programmed.

Q44
When the RLO is "1", the timer is reset (cleared). T Tl T ’:

The scan AT or OT produces signal state "1" if
the timer is running or the RLO at the input is "1".

CPU 928B Programming Guide
C79000-B8576-C898-01 3-43

Programming Examples in the STL, LAD and CSF Methods of Representation

Counter operations

Set counter

Logical/circuit operation

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
A | 4.0 14.0 ct el
|‘4.1‘ K‘C 150 cu c 1 % —_Jcu 140 — CU
A | 4.1 -
RS Cl L KC 150 a1 CP —{ €D
7+ﬂ s ¢! % Ps Bl — 141 s BI |
L | pinary KC150_ | ¢y DE|l KC 150 — CV DE|
CQ | 16 pits o o R o

When the result of logic operation changes at the start input
(14.1) from "0" to "1", the counter is loaded with the specified

value (150).

The flag necessary for edge evaluation of the set input

is incorporated in the counter word.
Bl and DE are digital outputs of the counter cell. The

value at Bl is in binary code and the value at DE is in

BCD.

Reset counter

Logical/circuit diagram

STEP 5 representation

Statement Ladder Control system
list diagram flowchart
A | 4.0 14.0 c2 c2
14.2 Ch C 2 CcD 14.0 — CD
il A M=l
R S CI R C 2 — Cu —Jcu
It A c 2 —S Bl —1S BI
PR = Q 24
L b _lcv DE | _lcv DE
o Gl
% % R Q {} 142 R Q=]

An RLO of "1" (I 4.2) resets the counter to zero.

An RLO of "0" does not affect the counter.

CPU 928B Programming Guide

C79000-B8576-C898-01

Programming Examples in the STL, LAD and CSF Methods of Representation

Counter operations

(continued)
Count up
STEP 5 representation
Logical/circuit diagram Statement Ladder Control system
list diagram flowchart
C1l C1l
A | a1 14.1
% P cu 141 _|cu
||| e 1
RS Cl — P —Cb
I
141 —'S DU |— —S Bl |—
L | pinary _lcv DE | _lcv DE|
CQ | 16 pits . o . o

The value of the addressed counter is incremented
by "1" to a maximum value of 999. The function CU
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before CU. The
flags necessary for edge evaluation of the counter
inputs are incorporated in the counter word.

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an
up/down counter.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-45

Programming Examples in the STL, LAD and CSF Methods of Representation

Counter operations

(continued)

Count down

STEP 5 representation

Logical/circuit diagram
g g Statement Ladder Control system
list diagram flowchart
C1 C1
A | 4.0 14.0
% % cD 140 | cD
||| e 1
RS Cl — v e
IL
140 L —1s BI —Is Bl |
LU | pinary _cv DE _lcv DE|
CQ | 16 bits . o . o

The value of the addressed counter is decremented
by 1 to a maximum counter value of 0. The function
is only executed on a positive edge (from "0" to "1")
of the logic operation programmed before the CD.

The flags necessary for edge evaluation of the

counter inputs are incorporated in the counter word.

Owing to the two separate edge flags for CU and CD,
a counter with two different inputs can be used as an

up/down counter.

CPU 928B Programming Guide
C79000-B8576-C898-01

Programming Examples in the STL, LAD and CSF Methods of Representation

Comparison operations

Compare for equal to

STEP 5 representation

ical/circuit diagram

Logicalfcircuit diagra Statement Ladder Control system
list diagram flowchart
L 1 B19
1B19 1B20
‘ ‘ L 1B20 1B19 —|v1 F 1B19 —|C1 F
Vi1 V2 = F 1= Q3.0 1=
1B20 —{ V2 IB20 —{ C2 Q3.0
= = Q30 Q Q —Q
Q3.0

The first operand is compared with the second operand
by the comparison operation. The RLO of the comparison

is binary.
RLO ="1": comparison is satisfied if ACCU-1-L = ACCU-2-L
RLO ="0": comparison is not satisfied, when ACCU-1-L is

not equal to ACCU-2-L.

The condition codes CC1 and CCO are set as described

in the list of operations.

ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.

In a 32-bit fixed point comparison (! = D) and floating point
comparison (! = G) the entire contents of ACCU 1 and
ACCU 2 (32 bits) are compared with each other.

During the comparison, the numerical representation of the
operands is taken into account, i.e. the contents of ACCU-1-L
and ACCU-2-L are interpreted here as a fixed point number.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-47

Programming Examples in the STL, LAD and CSF Methods of Representation

Comparison operations
(continued)

‘ Compare for not equal to

STEP 5 representation
Logical/circuit diagram
ogical/circuit diag Statement Ladder Control system
list diagram flowchart
L 1 B21
1B21 DW3
L Dws B21 __ V1 F 1B21 _|v1 F
%1 V2 < F >< Q3.1 ><
| —1Vv2 Q3.1
4 - a1 DW3 __ V2 Q { DW3 Ql_Q
El
Q3.1

The first operand is compared with the second operand
by the comparison operation.

The RLO of the comparison is binary.

RLO = "1": comparison is satisfied if ACCU-1-L is not
equal to ACCU-2-L.

RLO ="0": comparison is not satisfied if ACCU-1-L

equals ACCU-2-L.

The condition codes CC1 and CCO are set as described

at the beginning of Section 3.5.

ACCU-2-H and ACCU-1-H are not involved in the operation
for a 16-bit fixed point comparison.

ACCU-2-H and ACCU-1-H are involved in a 32-bit fixed
point comparison and floating point comparison.

This information also applies to comparison operations for
"greater than", "greater than or equal to", "less than" and
"less than or equal to" (see the operations list). During the
comparison, the numerical representation of the operands
is taken into account, i.e. the contents of ACCU-1-L and
ACCU-2-L are interpreted here as a fixed point number.

CPU 928B Programming Guide
C79000-B8576-C898-01

Supplementary Operations

3.5.3
Supplementary Operations

A

System operations

CPU 928B Programming Guide
C79000-B8576-C898-01

You can use the supplementary operations set on the programmer
only in function blocks (FB and FX). This means that the total
operations set for function blocks consists of the basic operations and
the supplementary operations.

The system operations also belong to the supplementary functions.
You can use the system operations, for example to overwrite the

memory at optional locations or to change the contents of the working
registers of the CPU.

If you intend to use system operations, you should be familiar with
Chapter 9 "Memory access".

Caution
Only experienced system programmers should use the system
operations and then only with caution.

You can only write operations in function blocks in STL. You cannot
program function blocks in graphic form (LAD and CSF methods of
representation).

This section describes the supplementary operations and covers possible
combinations of substitution operations with actual operands.

System operationsire marked in the first column of the
tables with ' g

Supplementary Operations

Binary logic operations

Table 3-11 Binary logic operations with formal operands

Operation Operand Function
A = AND operation, scan a formal operand for signal state "1’
AN = AND operation, scan a formal operand for signal state '0’
0 = OR operation, scan a formal operand for signal state '1’
ON = OR operation, scan a formal operand for signal state '0’

}— Insert formal operand

Inputs, outputs, datand flgs addressed in binary (parameter
types: |, Q; data type BI) and timers and counters (parameter
type: T, C) are permitted as actual operands.

Digital logic operations

Table 3-12 Digital logic operations

Operation Operand Function
AW AND operation on the contents of ACCU-1-L and ACCU-2-L
ow OR operation on the contents of ACCU-1-L and ACCU-2-L
XOW Exklusive OR operation on the contents of ACCU-1-L and
ACCU-2-L

ACCUs 2, 3 and 4 are not affected, however, the condition codes
CC 1 and CC 0 are affected (see word condition codes).

CPU 928B Programming Guide
3-50 C79000-B8576-C898-01

Supplementary Operations

Set/reset operations

Table 3-13 Set/reset operations with formal operands

Operation Operand

Function

S =

RD=

Set a formal operand (binary)
Reset a formal operand (binary)
Reset a formal operand (digital)

for timers and counters

Assign the value of the RLO to a
formal operand

Insert formal operand
Inputs, outputs and F flags addressed in binary

(parameter type: |, Q; data type BI) are permitted
as actual operands.

CPU 928B Programming Guide
C79000-B8576-C898-01

Supplementary Operations

Timer and counter

operations

Table 3-14

Timer and counter operations with formal operands

Operation

Operand

Function

sP =

SD =

SEC =

SSU =

SFD =

L

Start timer specified by the formal operand as a pulse with th
value stored in ACCU-1-[(parameter type T).

Start timer specified by the formal operand as ON delay with th
value stored in ACCU-1-L (parameter type T).

Start timer specified by the formal operand as extended pulse
with the value stored in ACCU-1-L or set counter specified

as formal operand with the counter value stored in ACCU-1-L
(parameter type: T, C).

Start timer specified by the formal operand as stored
ON delaywith the value stored in ACCU-1-L or
increment a counter specified as formal operand
(parameter type: T, C).

Start timer specified by the formal operand as stored
OFF delay with the value stored in ACCU-1-L or
decrement a counter specified as formal operand
(parameter type: D, C).

Enable formal operand (timer/counter) for cold
restart (see FR T or FR R); (parameter type: T, C).

Insert formal operand

FR

T Oto 255

C 0Oto 255

Enable timer for cold restart:

The operation isnly executed on the leading edge
of the RLO (change from 0 to 1). The timer is
restarted if the RLO is 1 at the time of the start
operation. (See timing diagram below the table).

Enable a counter for setting or resetting:

The operation is executealy on the leading edge

of the RLO (change from 0 to 1). The counter is only
started if the RLO = 1 at the time of the start operation.

RLO
for SP T

[[JTL

for FR T

Y
Y

Scan
with A T

CPU 928B Programming Guide
C79000-B8576-C898-01

Supplementary Operations

Examples
Function block call Program in the Program executed
function block
a)
JuU FB 203
NAME EXAMPLE1
ANNA : 110.3 A =ANNA A1 103
BERT : T17 L KT 010.2 'L KT 010.2
JOHN : Q184 :SSU =BERT SS T 17
U =BERT U T 17
= =JOHN = Q 184
b)
:JuU FB 204
NAME :EXAMPLE2
MAXI : 110.5 A =MAXI A | 105
IRMA : 110.6 :SSU =DORA CU C 15
EVA 110.7 ‘A =IRMA A | 106
DORA c15 ‘SFD =DORA CD C 15
EMMA : F58.3 ‘A =EVA A1 107
'L KC 100 'L KC 100
:SEC =DORA 'S C 15
‘AN =DORA ‘AN C 15
= =EMMA = F 58.3
c)
:JuU FB 205
NAME :EXAMPLE3
BILL : 110.4 ‘A =BILL A | 104
JACK : T18 'L =EGON 'L W 20
EGON : IW 20 ‘SEC =JACK SE T 18
YOGI : F 100.7 ‘A =JACK AT 18
= =YOGI = F 100.7

CPU 928B Programming Guide
C79000-B8576-C898-01 3-53

Supplementary Operations

Load and transfer
operations

Table 3-15 Load and transfer operations with formal operands

Operation Operand Function

L = Load a formal operand:

The value of the operand specified as a formal
operand is loaded into the ACCU (parameter
type: I, T, C, Q; data type: BY, W, D).

LCD = Load a formal operand in BCD code:
The value of the timer or counter specified as a formal operand is
loaded into the ACCU in BCD code (parameter type: T, C).
LW = Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU
(parameter type: D; data type: KF, KH, KM, KY, KS, KT, KC).
LWD = Load the bit pattern of a formal operand:
The bit pattern of a formal operand is loaded into the ACCU
(parameter type: D; data type: KG).
T = Transfer to a formal operand:

The contents of the accumulator are transferred to
the operand specified as a formal operand (parameter
type: |, Q; data type: BY, W, D).

Insert formal operand

Actual operands permitted include those of the corresponding basic
operationgxcept for S fags For the "LW=" operation, permissible
data types include a binary pattern (KM) or a hexadecimal pattern
(KH), two absolute numbers of 1 byte each (KY), a character (KS), a
fixed point number (KF), a timer value (KT) and a counter value
(KC). For "LWD=" permissible data is a floating point number.

CPU 928B Programming Guide
3-54 C79000-B8576-C898-01

Supplementary Operations

Table 3-16 Load and transfer operations with special operands

Operation Operand Function

L RI 0 to 255 Load a word from the interface data area
into ACCU 1 (Rl area)

RJ 0to 255 Load a word from the extended interface area
into ACCU 1 (RJ area)
L RS 0Oto 255 Load a word from the system data area

into ACCU 1 (RS area)

RT 0Oto 255 Load a word from the extended system data
area into ACCU 1 (RT area)
T RI 0to 255 Transfer the contents of ACCU 1to a
word in the interface data area (RI area)
RJ 0to 255 Transfer the contents of ACCU 1 to a word
in the extended interface data area (RJ area)
T RS 60to 63 Transfer the contents of ACCU 1to a

word in the system data area (RS area)

RT 0Oto 255 Transfer the contents of ACCU 1 to a word
in the extended system data area (RT area)

In contrast to the RI, RJ and RT areas, yowodnuse words RS 60 to
RS 63 of the RS area. Refer to Section 8.3.4 "RS/RT Area".

You can use the RT area in its complete length (RT 0 t83%)
providing you do not use any standard function blocks.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-55

Supplementary Operations

Arithmetic operations

Table 3-17 Arithmetic operation ENT
Operation Operand Function
ENT - This causes a stack lift into ACCUs 3 and 4:
<ACCU 4> :=<ACCU 3>
<ACCU 3> :=<ACCU 2>
<ACCU 2> :=<ACCU 2>
<ACCU 1> :=<ACCU 1>
ACCUs 1 and 2 are not changed. The old contents
of ACCU 4 are lost.
Example

The following fraction must be calculated: (30 +3*4)/6=7

ACCU 1 ACCU 2 ACCU 3 ACCU 4

Contents of the ACCUs
before the sequence of a b c d
arithmetic operations

N
L KF +30 30 a c d
L KF +3 3 \30 c d
ENT 3 30 \30 \c

A
L KF +4 4 3 30 c
x F 12 30 & c A c
+ F 42 c A c A c
L KF +6 6 42 c c

F 7 c | c A c

CPU 928B Programming Guide
C79000-B8576-C898-01

Supplementary Operations

Table 3-18 Supplementary arithmetic operations
Operation Operand Function
S |ADD BN -128to Add a byte constant (fixed point) to ACCU-1-L (includes
+127 sign change)/the condition code in CC 0, CC 1, OV and
OS are not affected! — ACCU-1-H and ACCUs 2 to 4
remain unchanged.
S |ADD KF -32768to Add a fixed point constant (word) to ACCU-1-L/ the
+32 767 condition codes in CC 0, CC 1, OV and OS are not
affected! — ACCU-1-H and ACCUs 2 to 4 remain unchanged
s ADD V DH 0000 0000 Add a double word fixed point constant to ACCU 1/the
to condition codes in CC 0, CC 1, OV and OS are not affected|
FFFF FFFF |ACCUs 2 to 4 remain unchanged.
s|+DY Add two double word fixed point constants
(ACCU 2 + ACCU 1)/the result can be evaluated
incc o/cc 1.2
s/-DV Subtract two double word fixed point constants
(ACCU 2 - ACCU 1l)/the result can be evaluated in CC 0/ce 1.
S | TAK Swap the contents of ACCU 1 and ACCU 2

D Programming is dependent on the PG type and the release of the PG system software.

2 For changes in ACCU 2 and ACCU 3: see Section 3.5.1 "Basic Operations/Arithmetic Operations".

CPU 928B Programming Guide
C79000-B8576-C898-01

Executive Operations

3.54

Executive Operations The executive operations also include system operations.

Caution

System operations should only be used with care and then only by
experienced programmers familiar with the system.

System operationare indicated in the table k' S

Jump operations When you use the supplementary jump operations, you indicate the

Table 3-19

jump destination for unconditional jumps symbolically. The symbolic
parameter of the jump operation is identical to the symbolic address of
the destination statement. When programming, remember that the
absolute jump distance should not exced@7 words and a STEP 5
statement can consist of more than one word. You can only execute
these jumps within a block; jumps over segment boundaries are not
permitted ("segment" = structural element in PBs, SBs, FBs, FXs and
OBs; see STEP 5 manual).

Note

The jump statement and jump destination (symbolic address)
must be in the same segment. A symbolic address can only be
usedonceper segment.

Exception: this does not apply to the JUR jump for which you
specify an absolute jump distance as the parameter.

Jump operations

Operation

Operand Function

JUu =

JC =

addr Jump unconditionally:

The jump is executed regardless of conditions
(addr =symbolic
address with
maximum Jump conditionally:

4 characters) the conditional jump is executed only if the RLO is 1.

If the RLO is 0, the statement is not executed and the RLO
is setto 1.

Jump if resultis "0’ :
the jump is executed only if CC 1is0and CC 0is 0.
The RLO is not changed.

CPU 928B Programming Guide
C79000-B8576-C898-01

Executive Operations

Operation Operand Function

Table 3-19 continued:

JN = addr Jump if resultis not O :

the jump is executed only if CC1
(addr = symbolic |is not equal to CCO.

address with The RLO is not changed.
maximum
JP = 4 characters) Jump if result >0 :

the jump is only executed if CC1 =1
and CC 0 = O. The RLO is not changed.

Jump if result <’'0":
IJM = the jump is only executed if CC1=0and CC 0=1.
The RLO is not changed.

Jump on overflow:

the jump is executed when the OV condition code is 1. If
JO = there is no overflow (OV is 0), the jump is not executed. The
RLO is not changed.
An overflow occurs when an arithmetic operation exceeds
the permissible range for a given numerical representatio

>

Jump when the OS (stored overflow) condition code is set:
the jump is executed when the condition code OS is 1. If
there is no overflow (OS is 0), the jump is not executed. The
RLO is not changed.
JOS = An overflow occurs when an arithmetic operation exceeds

the permissible range for a given numerical representation.
S | JUR -32 768 to Relative jump within the user memory or within a function
+32 767 block (e.g. to arrive in a different segment). The operation is

always executed regardless of conditions.
The operand is the number of words difference between the

address of the jump destination - the current destination. |The
jump is executed either to a higher (positive operand) or
lower (negative operand) address than the current operation.

Caution

If you useJUR incorrectly, undefined statuses can occur in the
A system. It should only be used by extremelyezienced

programmers with detailed knowledge of the system.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-59

Executive Operations

Shift operations

Table 3-20 Shift operations
Operation Operand Function (operation with ACCU 1)
SLW 0 to 15 Shift a word to the left (vacant positions
to the right are padded with zeros)
SRW Oto 15 Shift a word to the right (vacant position
to the left are padded with zeros)
SLD Oto 32 Shift a double word to the left (vacant positions
to the right are padded with zeros)
SSW Oto 15 Shift a word with sign to the right (vacant positions
to the left are padded with the sign - bit 15)
SSD 0to 32 Shift a double word with sign to the right (vacant
positions to the left are padded with the sign - bit 31)
RLD Oto 32 Rotate to the left
RRD Oto 32 Rotate to the right

Only ACCU 1 is involved in the execution of shift operations. The

parameter part of these operations specifies the number of positions by

which the accumulator contents should be shifted or rotated. For the
SLW, SRW and SSW operatiomasly the low word of ACCU 1 is
involved in the shift operations. For SLD, SSD, RLD and RRD
operations, the entire contents of ACCU 1 (32 bits) are involved.

Shift operations are executed regardless of conditions.

You can use jump operations to scan the value of the last bits shifted
out using CC 1/CC 0.

Shift: last CC1 CCoO Jump operation
bit shifted
0 0 0 JZ=
1 1 0 JN=
JP=

CPU 928B Programming Guide

C79000-B8576-C898-01

Executive Operations

Examples

1. You want to shift the contents of data word DW 52 four bits to the
left and
write them to data word DW 53.

STEP 5 program: Contents of the data words:

'L DW52 KH = 14AF
SLW 4
‘T DW53 KH = 4AFO0

2. You want to read the input double word ID 0, and shift the contents of
ACCU 1 so that the bit positions of the input double word shown in bold
face are retained and the remaining bit positions are set to defined
values (OH or OFH).

STEP 5 program: Contents of ACCU 1 (hexadecimal)

ACCU-1-H: ACCU-1-L:
L IDO 2 348 ABCD
SLw 4 2348 BCDO
SRW 4 2348 0BCD
SLD 4 3480 BCDO
SSW 4 3480 FBCD
SSD 4 0348 OFBC
‘RLD 4 3480 FBCO
‘RRD 4 0 348 OFBC

3. Application: Multiplication by the 3rd power, e.g. new value = old
value x 8

L FW10

SLW 3

T FwW 10 Caution: do not exceed the
positive area limit!

4. Application: Division by the 2nd power, e.g. new value = old value : 4

.C DB5
L DwWO

CPU 928B Programming Guide
C79000-B8576-C898-01 3-61

Executive Operations

Conversion operations

Table 3-21 Conversion operations
Operation Function
CFW Form the 1's complement of ACCU-1-L (16 bits)
csw Form the 2's complement of ACCU-1-L (16 bits)
CsD Form the 2's complement of ACCU 1 (32 bits)
DEF Convert a fixed point number (16 bits) from BCD to binary
DUF Convert a fixed point number (16 bits) from binary to BCD
DED Convert a double word (32 bits) from BCD to binary
DUD Convert a double word (32 bits) from binary to BCD
FDG Convert afixed point number (32 bits) to a floating point number (32 bits)
GFD Convert a floating point number to a fixed point number (32 bits)

DEF The value in ACCU-1-L (bits 0 to 15) is interpreted as a BCD
number. After the conversion, ACCU-1-L contains a 16-bit fixed
point number.

DUF The value in ACCU-1-L (bits 0 to 15) is interpreted as a 16-bit fixed
point number. After the conversion, ACCU-1-L contains a BCD number.
15|14 0

si2¥ ... %
15 DUF | DEF 1 0
SSSS 16 10t 10°
S (sign): 0 = positive
1 =negative
CPU 928B Programming Guide
3-62 C79000-B8576-C898-01

Executive Operations

DED The value in ACCU 1 (bits 0 to 31) is interpreted as a BCD number.
After the conversion, ACCU 1 contains a 32-bit fixed point number.

DUD The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed
point number. After the conversion, ACCU 1 contains a BCD number.

31/ 30 0
sl2%.... 20‘
DUD | DED 1
31 0
| ssss| 18 | 10° 104 103 102 10! 100 |
S (sign): 0 = positive
1 = negative
FDG The value in ACCU 1 (bits 0 to 31) is interpreted as a 32-bit fixed

point number. After the conversion, ACCU 1 contains a floating point
number (exponent and mantissa).

GFD The value in ACCU 1 (bits 0 to 31) is interpreted as a floating point
number. After the conversion, ACCU 1 contains a 32-bit fixed point
number.

31/ 30 0

s2%0 . v
FDG | GFD 1
31,30 .. 24 23 0
S2% Sslot ... 23
Exponent Mantissa

The conversion is made by multiplying the (binary) mantissa by the value
of the (binary) exponent by shifting the mantissa value to more
significant bits past an imaginary decimal point byvdlee of the

exponent (base 2). After the multiplication, remnants of the original
mantissa remain to the right of the imaginary decimal point. These bit
places are cut off from the whole result.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-63

Executive Operations

This conversion algorithm produces the following result classes:

» Floating point numbers 0 or <-1result in thenext lower
number.

» Floating point numbers 0 and > -1result in thevalue '0'.

Conversion examples

Floating point number 32-bit fixed point number
GFD
+5,7 - 5
-2,3 - -3
-0,6 - 0
+0,9 - 0

Examples of CFW, CSW
1. You want the contents of data word DW 64
inverted bit for bit (reversed) and stored in
data word DW 78.

STEP 5 program: Assignment of the data words:

'L DW 64 KM =0011111001011011
‘CFW
‘TDW 78 KM = 1100000110100100

2. The contents of data word DW 207 are
interpreted
as a fixed point number and stored in data
word 51 with a reversed sign.

STEP 5 program: Assignment of the data words:

'L DW 207 KF =+51
CSW
‘T DW 51 KF =-51

CPU 928B Programming Guide
3-64 C79000-B8576-C898-01

Executive Operations

Decrement/
increment

Table 3-22 Decrement/increment operation

Operation Operand Function

D 1to 255 Decrement the low bytits 0 to 7) of ACCU-1-L
by the value of the opera

I 1to 255 Increment the low bytébits O to 7) of ACCU-1-L
by the value of the opera

Y The contents of the low byte of ACCU-1-L are decremented or incremented by the number specified as the
operand without a carry. The operation is executed regardless of conditions.

Example

STEP 5 program: Assignment of the data words:

LDW7 KH =1010
1 16
:;TDW 38 KH = 1020
:D 33
:-TDW?9 KH = 10FF

Processing operations

Table 3-23 Processing operations

Operation Operand Function

DO DW 0 to 255 Process data word:

the following operation is combined with
the parameter specified in the address data
word and executed.

FW 0 to254 Process flag word:

the following operation is combined with
the parameter specified in the addressed
F flag and executed.

DO = Process formal operand (parameter type B):
Only C DB, JU PB, JU OB, JU FB, JU SB
can be substituted.

Insert formal operand

CPU 928B Programming Guide
C79000-B8576-C898-01 3-65

Executive Operations

Operation

Operand

Function

Table 3-23 continued:

S BI D Indirect processing of a formal operand:
execute an operation whose operation code is
stored in a formal operand. The number of the
formal operand must be stored in ACCU 1.

B RS 60to 63 Execute an operation whose operation code

is stored in the system data area (RS = free
system data: RS 60 to 63). In 2-word operations
the 2nd word must be loaded in RS n + 1.

Y The value in the formal operand or system data is interpreted as the operation code of a STEP 5
operation and is then executed.

Note
Only the following operations can be combined viith DW, or
DO FW, DIl orDO RS

- A.,AN..,O..,ON..,S.. ,R.., =..
with areas |, Q, F, S,

- FRT,RT,SFT,SDT,SPT,SST,SET,

- FRC,RC,SC,CDC,CUC,

- L., T.withareasP, O, 1, Q,F, S, D, Rl, RJ, RS, RT,
- LT, LC,

- LCT,LCC,

- JU=,3C=, JZ=, IN=, JP=, JM=, JO=,

- SLW, SRW,

- D, |, SED, SEE,

- CDB,JuU..,JC.., GDB, GXDX, CXDX, DOC FX, DOU FX

The PG does not check the legality of the combinations!

CPU 928B Programming Guide
C79000-B8576-C898-01

Executive Operations

Examples of DO operations

DO DW/DO FW

1. Principle of substitution:

L KF+120
T FW14
‘DO FW14
L IBO

Operand substitution

Using the statements "DO DW" and "DO FW" you can access data with

a substitution, e.g. in a program loop. The substituted access consists of
the statement DO DW/DO FW followed immedig by one of the

STEP 5 operations listed above.

"Substituted" means that the operand for the operation is not programmed

as a static value but is fixed during the course of the STEP 5 program. -

Select the operangpe from the range permitted for the operatidren
you write your program, e.gB for the operation "JU PB nn":

You must first load the operandlue (nn in the example) in a data word
or F flag word (parameter word) before the substituted access with
DO DW/DO FW.

load FW with the value "KF +120"

before the operation "L IB" is executed,

the operand value '0’ is replaced by the value
'120’;

Operation executed: L IB 120

2. Data word as index register:

The contents of data words DW 20 to DW 100 are set to signal state '0’.
The index register for the parameter of the data words is DW 1.

KF +20
DW 1
KF +0
Dw 1
DW 0
Dw 1
KF +1

M001

or-dr
O

DW 1
KF +100

L S
‘III'I M

=MO001

CPU 928B Programming Guide
C79000-B8576-C898-01

supply the index register

reset

increment the index register

jump if the index is within the range
remaining STEP 5 program

Continued on next page

Executive Operations

Examples of operand substitution continued:

3. Jump distributor for subroutine techniques:

:DO
— JuU
+ JU
Jump :JU
distance JU
JU
MO001
‘BEU
MO002 :
‘BEU
MO003 :
‘BEU

FW 5
=M001 Contents of flag word FW 5:
=M002

=M003 jump distance

=MO004 (maximum
=MO005

Advantage:
all program sections are
contained in one block.

4. Jump distributor for block calls:

:DO FW10

Ju PBO T——PBO

—PB1 Block no. x
—PB2
—PB3

—PBx

+127)

Contents of flag word FW 10:

Operand substitution with binary operations

For operand substitutions with binary operations you can use the
following operand types: inputs, outputs, F flags, S flags, timers and

counters.

In this substitution, the structure of the F flag word or data word
(parameter word) depends on the operation you are using.

Parameter word for inputs and outputs

Bitno. | 15 11 10 8

6

0

no significance Bit addres
fromOto 7

Byte address from 0 to 12}

CPU 928B Programming Guide

C79000-B8576-C898-01

Executive Operations

Parameter word for F flags

Bitno. | 15 11 10 8 7 0

no significance Bit address Byte address from O to 255
fromOto 7

Parameter word for S flags

Bitno. | 15| 14 12 11 0

0 |Bit address Byte address from 0 to 1023
fromOto 7

Parameter word for timers and counters

Bitno. | 15 8| 7 0

no significance Number of timer or
counter cell from 0 to 255

Principle of the substitution
with a binary operation

15\ L1 \11 10\ \8 7 [I \0
4 0 30 ow 27
D0 ow 27
A1 00
Al 30

'

statement executed

CPU 928B Programming Guide
C79000-B8576-C898-01 3-69

Executive Operations

Example of DI operation

In function block FB 1, STEP 5 operations are executed whose operation
codes were transferred
by a calling block as formal operands FW 10, FW 12 and FW 14.

Which of the operation codes is executed is written by the calling
block as a consecutive number in flag word FW 16.

The result of the executed operation is then entered in ACCU 1 and is

transferred to flag word FW 18.

FB 1
NAME
DECL

DECL
DECL

‘TEST

‘FW10
‘FW12
‘Fwi4

L FW16

:DlI
T FW 16
‘BE

FB 2

L KE+1
T FEW16

AUFR

JU FB1

NAME
FW10 :
FW12 :
FW14 :

‘TEST

I/IQ/D/BITIC: D KM/KH/KY/KS/KF/KT/KC/KG: KH
I/IQ/D/BITIC: D KM/KH/KY/KS/KF/KT/KC/KG: KH
I/IQ/D/BITIC: D KM/KH/KY/KS/KF/KT/KC/KG: KH

=AUFR

KH 4A5A
KH xxxx
KH yyyy
T FW 18
‘BE

List of actual operands in FB 2

FwW 10
Fw 12
FW 14

cons. number of formal operand
with required operation code

transferred operation code is executed

result from ACCU 1

cons. no. of formal operand with operation code

call FB TEST

op. code "L IB 90", formal operand 1
other operation code, formal operand 2
other operation code, formal operand 3

ACCU1 - FWI18

Principle of sequence in FB 1

¢ 4ASAH
XXxxH FW 16 ‘ 0001H
yyyyH l
ACCU 1 | 0001H |
(cons. no. of actual operand)
Y
L IB 90 <

Operation executed with "DI"

CPU 928B Programming Guide
C79000-B8576-C898-01

Semaphore Operations

Disabling/enabling
process interrupts

Table 3-24 Disabling/enabling process interrupts

Function
1A Disable external process interrupt servicing
RA Enable external process interrupt servicing

You can use operations "disable/enable process interrupts", for example
to suppress external process interruwgiten you areising time-driven
processing. External process interrupt-driven processing is then no longer
possible in the program section between the 1A and RA operations.

See also the special function OB 120 "disable interrupts”, Section 6.5.

3.55

Semaphore Operations If two or more CPUs in one programmable controller (see Chapter 10)
require access to the same global memory area (peripherals, CPs, IPs),
there is a danger that one CPU will overwrite the data of another CPU
or that one CPU could read invalid intermediate data statuses of
another CPU and misinterpret them. You must therefore coordinate
CPU accesses to the common memory areas.

You can coordinate the individual CPUs using the SED and SEE
operations.

You can, for example, program the following coordination between two
CPUs: a CPU involved in multiprocessing caly access theommon
memory area after it has successfully set a declared semaphore (SES). A
semaphore xx camly be set by aisgle CPU. If a CPU fails to set (i.e.
disable) the semaphore, it cannot access the memory area. In the same
way, a CPU can no longer access the memory once it has released the
semaphore again (SEE).

CPU 928B Programming Guide
C79000-B8576-C898-01 3-71

Semaphore Operations

SED/SEE disable/enable (non-system operations)
semaphore

Table 3-25 Disable/enable semaphore

Operation Operand Function
SED 0 to 31 Disable (set) a semaphore
SEE 0 to 31 Enable (release) a semaphore

evaluation of the result of the operation via
cco/ccl

Note

The SED xx and SEE xx operations must be progranimaid
CPUsthat require synchronized access tmamon global
memory area.

Standard FBs, handling blocks and blocks for multiprocessor
communication manage the coordination internally. If you use
these blocks, you do not need to program the operations SEE xx
and SED xx.

Effect of SED/SEE The CPU that executes the operation SED xx (disable semaphore)
accesses a specific byte in the coordingtarvided that no other
CPU has access to that byte already). Once a CPU has reserved
access, the other CPUs can no longer access the memory area
protected by the semaphore (numbers 0 to 31). The area is therefore
disabled for all other CPUs.
Make sure that the coordination functions correctly, all CPUs
requiring access to the same area of global memory must use the same
semaphore.

The SEE xx (enable semaphore) operation resets the byte on the
coordinator. The protected memory area is then once again accessible
to the other CPUs. A semaphore can only be enabled by the CPU that
disabled it.

CPU 928B Programming Guide
3-72 C79000-B8576-C898-01

Semaphore Operations

Use of SED/SEE Fig. 3-8 illustrates the basic sequence of coordinated access using a
semaphore.

Disable semaphore
SED

Operation
successful?

Yes

Access to sema-
phore protected
global memory

Enable semaphore:
SEE

End

Fig. 3-8 Coordination of access to the global memory

Before disabling or enabling a particular semaphore, the SED and SEE

operations scan the status of the semaphore. The condition codes CC 0
and CC 1 are affected as follows:

CC1l | CCO | Evaluation Significance
0 0 JZ Semaphore was disabled by
another CPU and cannot be
disabled/enabled.
1 0 JN, JP Semaphore was disabled/
enabled.

CPU 928B Programming Guide
C79000-B8576-C898-01 3-73

Semaphore Operations

Note

The scanning of a particular semaphore (= read procedure) an
the disabling or enabling of the semaphore (=write procedure) are
one unit. No other CPU can access the semaphore during thes
procedures!

When using semaphores, remember the following points:

A semaphore is a global variable, i.e. the semaphore with number
16 exists onloncein the entire system, even if your controller is
using three CPUs.

All CPUs that require coordinated access to a common memory area
must use the SED and SEE operations.

All participating CPUs must execute themestart-up type.

During a COLD RESTART, all the semaphores are cleared.
During a manual or automatic warm restart, the semaphores are
retained.

Start-up in multiprocessor operation must be synchronized. For
this reasompo test operation is allowed.

CPU 928B Programming Guide
C79000-B8576-C898-01

Semaphore Operations

Application example for
semaphores

Tasks:

Four CPUs are plugged into an S5-135U. They output status messages to a
status signalling device via a common memory area of the O peripherals
(OW 6). A CPU must output each status message for 10 seconds. Only after
a 10 second output can a new message be output from the same CPU or a
different CPU overwrite the first message. The use of peripheral word OW

6 (extended I/O area, no process image) is controlled by a semaphore.

Only the CPU that was able to reserve this area for itself by disabling

the assigned semaphore can write this message to OW 6. The semaphore
remains disabled for 10 seconds at a time (TIMER T 10). The CPU
re-enables the semaphore only after this timer has elapsed. After the
semaphore has been re-enabled, the other CPUs can access the reserved
area. The new message can then be written to OW 6.

If one CPU attempts to disable a semaphore and the semaphore is already
disabled by a second CPU, the first CPU waits until the next cycle. It

then re-attempts to set the semaphore and output its message.

Implementation:

The following program can run in all four CPUs, each with a different
message. The blocks shown below are loaded.

FB 100:

DISABLE SEMAPHORE
FB O: FB 10: FB 110:
MAIN PROGRAM REPORT OUTPUT REPORT

FB 101:

ENABLE SEMAPHORE

5 flags are used as follows:
F 10.0=1: amessage was requested or is being processed
F 10.1=1: the semaphore was disabled successfully
F10.2=1: the timer was started
F 10.3=1: the message was transmitted

F 10.4=1: the semaphore was re-enabled

Continued on next page

CPU 928B Programming Guide
C79000-B8576-C898-01 3-75

Semaphore Operations

Semaphore application example continued:

FB O
NAME :MAIN

‘A F10.0
JC =M001

AN 1 0.0
‘BEC

L KH2222
T FW12
‘AN F10.0
'S F10.0

M001 :JU FBI10
NAME :REPORT

BE

FB 10
NAME :REPORT

‘AN F10.1
xJC FB100
NAME :SEMADIS

‘A F101
‘AN F10.2
S F10.2
'L KT010.2
SE T10

‘A F10.2

‘AN F10.3

JC FB110
NAME :MSGOUT

‘A F10.2
‘AN F10.4
‘AN T10
JC FB101
NAME :SEMAENAB

‘AN F 104
‘BEC

L KHO000
T EY10
‘BE

If no message is active,

generate message and

set "MESSAGE" flag.

Call "REPORT" FB

If no semaphore is disabled,
call "disable semaphore" FB.

If the semaphore is disabled
and the timer has not started,
start the timer.

If the timer has started

and no message is being transmitted,
call "output message" FB.

If the timer has started

and the semaphore is not enabled
and the timer has elapsed,

call "enable semaphore" FB.

If the semaphore is enabled,

reset all flags.

Continued on next page

CPU 928B Programming Guide
C79000-B8576-C898-01

Semaphore Operations

Semaphore application example continued:

FB 100
NAME :SEMADIS

:SED 10

2JZ =MO001

‘AN F10.1

S F10.1
MO001 :BE

FB 110

NAME:MSGOUT
'L FW12
T OW 6

‘AN F10.3
S F103

FB 101

NAME :SEMAENAB
SEE 10
[JZ =M001
‘AN F104
S F104

MO0O1 ‘BE

CPU 928B Programming Guide
C79000-B8576-C898-01

Disable semaphore no. 10

If the semaphore is disabled successfully,
set "SEMAPHORE-DISABLED" flag.

Transmit a message
to the peripherals

Set "TRANSFER MESSAGE"
flag

Enable semaphore no. 10

Set "SEMAPHORE ENABLED"
flag

Operating Modes and Program 4
Processing Levels

Contents of Chapter 4

4.1

4.2

4.3

43.1
43.2
4.3.3

4.4

44.1
442
443
444
445

4.5

45.1
45.2

453

45.4
455

Introduction and OVEIVIEW.ot e e e e e 4-4
Program Processing Levels 4-7
STOP MOde 4-13
Characteristics and Indication of the OperatingMode 4-13
Requesting @@VERALL RESET e 4-15
Performing an OVERALL RESET i e 4-16
RESTART MOGE. . .. oot e e e e e e e e 4-17
MANUAL and AUTOMATIC COLD RESTARTt 4-18
MANUAL and AUTOMATIC WARM RESTARTottt 4-19
Comparison of the Ddfent Restart Types.t 4-21
User Interfaces for Restartt e 4-22
Interruptions in the RESTART Mode i 4-25
RUN MOGEo e e e 4-27
Cyclic Program EXECULIONo oot e e 4-28
Time-Driven Program EXeCUtiON. it e 4-31
Delay interrupt (from Version -3UB12) 4-31
Clock-driven time interrupts 4-33

TIME INTERRUP T S . .. e e e e 4-35
Collision of time interrupts (WECK-FE) 4 - 36
CLOSED LOORCONTROLLER INTERRUPT: Processing

Closed Loop Controllerst e e 4 -38
PROCESS INTERUPT: Interrupt-Driven Program Execution 4 -39
Nested Interrupt-Driven and Time-DrivRrogram Execution 4-42

CPU 928B Programming Guide
C79000-B8576-C898-01 4 -1

Operating Modes and Program 4
Processing Levels

This chapter provides an overview of the operating statuses and
program execution levels of the CPU 928B. It informs you in detalil
about various types of start-up and the organization blocks associated
with them, in which you can program your own sequences for various
situations when restarting.

You will also learn the characteristics of the program execution modes
"cyclic processing”, "time-controlled processing" and
"interrupt-driven processing" and will see which blocks are available

for your user program.

CPU 928B Programming Guide
C79000-B8576-C898-01 4-3

Introduction and Overview

4.1 Introduction and Overview

The CPU 928B has three operating modes:
e« STOPmode

e RESTART mode

« RUN mode

In the RESTART and RUN modes, certain events can occur to which
the system program has to react. In many cases, a specific
organization block (a block from OB 1 to OB 35) is called as a
reaction to an event and serves as the user interface.

The modes are displayed by LEDs on the front panel of the CPU.
Some of the modes must be activated using the operating elements on
the front panel of the CPU. The position of teDs and operating
elements can be seen in Fig. 4-1.

S5-155U CPU948

Receptacle for
memory card

@RUN

sror | Mode selector
ORun LED (green)
OsTop LED (red)

O svys FAULT— LED (red)

RUCKSETZEN
RESET

Reset switch

=
URLOSCHEN
Urestr
RE!
H Error display LEDs (red)
E@ovz o©mNT— Error display LED (red)

(O ADF O Si— Interface error LEDs (red
=0 zyk o 3,27:’7 ()
o BaspP | Interface SI1

[PG interface, 15-pin

9 s /si2

g o Second serial interface SI2
Y Receptacle for interface submodule
3

L)

)

L

|o|

2N0

i

E Order number and version
(%]

Lever

Securing bolt

Fig. 4-1 Front panel of the CPU 928B with display and operating elements

CPU 928B Programming Guide
4-4 C79000-B8576-C898-01

Introduction and Overview

Us).

CPU

LED display of modes Various LEDs on the front panel of the CPU signal the current CPU
mode. The following table shows you the relationship between the
STOP and RUN LED displays and the mode they indicate.
Other LEDs (BASP, ADF, QVZ, ZYK) provide more information.
Table 4-1 Meaning of the LEDs "RUN" and "STOP"
LED LED Mode
RUN STOP
ON OFF | The CPU is in the RUN mode.
OFF ON | The CPU is in the STOP mode.
After a STOP request at the switch or from the PG, the STOP LED is lit
continuously, because the STOP condition was requested by the user or, in
multiprocessor operation, by another CPU and was not prompted by the CPU
itself.
OFF OFF | The CPU is in the RESTART mode
or
the CPU is in the RESTART/RUN mode, the program test is active and the
program has reached a breakpoint (wait state)
or
the CPU is in the RESTART/RUN mode, the program test is active and a
breakpoint was eliminated again before it was reached (wait state)
OFF | flashing| The CPU is in the STOP mode.
slowly | The CPU itself prompted the STOP condition (possibly also of the other CH
Typical causes:
ADF, QVZ, LZF, BCF, CL controller error, interrupt collision, cycle time errar,
BSTACK overflow, ISTACK overflow, stop command, end of processing check.
If you switch the mode selector to STOP, the flashing stops and the LED isilit
continuously.
OFF | flashing | The CPU is in the STOP mode.
quickly | An overall reset has been requested. This request can be prompted by the
itself or by an operator input.
ON ON | serious system error
Remedy:
- Overall Reset of CPU;
if error persists,
- Switch off voltage at PLC, remove and re-insert the CPU and
perform Overall Reset;
if error persists,
- Replace CPU or have it repaired.

CPU 928B Programming Guide
C79000-B8576-C898-01

Introduction and Overview

Signalling and error LEDs

BASP LED

"QVZ" LED

"ADF" LED

"ZYK" LED

This indicates whether the S5 bus signal BASP (disable command
output) is active:

In the single processor mode, the CPU clears BASP when it changes
to the RUN mode and sets BASP when it changes to the STOP mode.
BASP is activated in the RESTART and in the STOP mode and in the
first cycle following a warm restart.

In the multiprocessor mode, the conditions for BASP are identical

with those in the single processor mode, provided the switch on the
coordinator is set to RUN. (See your System Manual (/2/ in Chapter
13) for more information on the "Test mode" special case.)

Note
If BASP is active, all digital outputs are disabled.

If an AUTOMATIC or MANUAL WARM RESTART has been
executed before the transition to the RUN mode, the BASP LED
goes out only after the remaining cycle has been processed.

Timeout of an I/O module.

Addressing error; the user program has accessed an address in the
process image for which there is no module inserted in the 1/0s.

Cycle error; cycle monitoring time has been exceeded.

The errors ADF and QVZ can only occur in RESTART and in RUN,
the cycle error ZYK can only occur in RUN.

At the end of the program processing levels ADF, QVZ or ZYK, the
error LED is cleared by the system program, if the CPU has not gone
to the STOP mode.

CPU 928B Programming Guide
C79000-B8576-C898-01

Program Processing Levels

4.2 Program Processing Levels

Fig. 4-2 gives an overview of the operating states and the processing
levels in the CPU 928B (-3UB12). The explanations of the
abbreviations are on the following page.

In multiproc.
LED RUN: off LED RUN: off \‘,’vgﬁt’att(')ogita” LED RUN: on
LED STOP: on LED STOP: off cycle together LED STOP: off
LED BASP: on LED BASP: on LED BASP: off
STOP RESTART mode i RUN
mode N mode
MANUAL COLD CYCLE WECK-FE
RESTART/ BCF TIMED JOB | REG-FE
STP RETENTIVE 7vK
PEU C. RESTART/ iLzF TIME INT.
- BCF
BAU WARM REST ADF CONTR. INT. L;:F
DOPP AUTOMAT. QvZz DELAY ADE
STUEU C. RESTART/ |ssF INTERRUPT
STUEB RETENTIVE Qvz
C. RESTART/ PROCESS SSE
WARM REST. INTERRUPT
””””””””””” STP
NAU PEU
. BAU
A DOPP
NAU STUEU
STUEB
ABORT (OB 28)
(mode selector,
PG-STP or MP-STP)
Y Y
POWER UP NAU
POWER
DOWN

Fig. 4-2 Operating states and program processing levels

CPU 928B Programming Guide
C79000-B8576-C898-01 4-7

Program Processing Levels

Program processing levels in RESTART:

MANUAL COLD RESTART
MANUAL WARM RESTART

RETENTIVE MANUAL COLD RESTART Restart
RETENTIVE AUTOMATIC COLD RESTART levels

AUTOMATIC COLD RESTART
AUTOMATIC WARM RESTART

BCF (operating code error)

LZF (runtime error) error

ADF (addressing error) levels

Qvz (timeout)

SSF (interface error) _

Program processing levels in the RUN mode:]
CYCLE (cyclic program execution)

TIMED JOB (time-driven program execution)

TIME INT 5 sec (time-driven program execution)

TIME INT 2 sec (time-driven program execution)

TIME INT 1sec (time-driven program execution)

TIME INT 500 ms (time-driven program execution)

TIME INT 200 ms (time-driven program execution) Basic
TIME INT 100 ms (time-driven program execution) levels
TIME INT 50 ms (time-driven program execution)

TIME INT 20 ms (time-driven program execution)

TIME INT 10 ms (time-driven program execution)
CONTROLLER INT (collision of time interrupts)

DELAY INTERRUPT (time-driven program executior]l)

PROCESS INT (process interrupt-driven prog. execution) |
WECK-FE (collision of time interrupts)

REG-FE (CL controller error)

ZYK (cycle time error)

BCF (operating code error) Error

LZF (runtime error) levels

ADF (addressing error)

Features of a program
processing level

1) from Version -3UB12

A program processing level is characterized by specific features which
are explained on the following pages.

CPU 928B Programming Guide
C79000-B8576-C898-01

Program Processing Levels

Nesting other levels

Specific system program

ISTACK

CPU 928B Programming Guide
C79000-B8576-C898-01

When an event occurs, which requires higher priority processing, the
current level is interrupted by the system program and the higher
priority level is activated.

This occurs in the following situations:

e aterror levels
and program processing
levels at RESTART: always at operation boundaries,

« all other levels: at block or operation boundaries
(depending on the setting in DX 0
refer to Chapter 7)

Each program processing level has its special system program.

Example:

At the CYCLE processing level, the system program
updates the process image of the inputs and
outputs, triggers the cycle monitoring time and
invokes management of the programmer interface
(system checkpoint).

After the system program calls an organization block, the CPU
executes the STEP 5 statements it contains. The current register record
is saved in the ISTACK and a new register record is set up (register:
ACCU 1 to 4, block stack pointer, block address register, data block
start address, data block length, step address counter and the base
address register).

If "normal” program execution is interrupted by the occurrence of an
event, following the execution of the OB, the CPU continues the
program execution at the point of interruption as long as no stop is
programmed in the OB.

Example:

STP WARM RESTART

ISTACK 4
ADF ALF
Depth 1
ISTACK y
BCFr BCF BCr
Depth 2
ISTACK
CYCIF CYCLE CyclE
Depth 3

ISTACK = Image of the
interrupted levels

Fig. 4-3: Principle of level change and ISTACK

7

A
X

N
~

8

Program Processing Levels

Priority Program processing levels have a fixed priority. Depending on this
priority, they can interrupt each other or can be nested within each
other.

they can always be nested at operation boundaries whenever the

appropriate event occurs. They can be nested both in the basic levels
V and within each other. In the event of errors, the last to occur always
has the highest priority.

: Thewarm restart and error levels differ from the basic levels in that

A basic level on the other hand can be nested in a lower priority
level only at block boundaries unless this default is changed by
writing the appropriate program in DX 0 (see Chapter 7).

Priority of the "basic levels":

CYCLE

TIMED JOB
TIMEINT 5 s ascending priority
TIMEINT 2 s

CONTROLLER INT
PROCESS INT

Example:

A process interrupt occurs during the
processing of a time interrupt. Since the
process interrupt has a higher priority, the
processing of the time interrupt level is
interrupted at the next block boundary and the
PROCESS INTERRUPT program processing level is
activated. If, for example, an addressing

error is detected while the process interrupt

is being serviced, the process interrupt is
stopped immediately at the next operation
boundary to activate the ADF level.

CPU 928B Programming Guide
4-10 C79000-B8576-C898-01

Program Processing Levels

Response to double Once an error level has been activated (ADF, BCF, LZF, QVZ, REG,
error ZYK) it cannot be activated again until it has been processed
completely, not even if a different program processing level is nested
within it. In this case, the PLC changes to the STOP mode
owing to the double call of a program processing level (DOPP in
the ISTACK).
Collisions of time interrupts are an exception, refer to the relevant
section). In the ISTACK, at depth "01", the DOPP identifier and the
error level called twice are marked.

Examples of double
call errors

Example 1:

During the processing of the ADF level (user
interface OB 25) a further processing error occurs.
Since the ADF level is still active, it cannot be
called a second time; the CPU changes to STOP.

STOP
A
Addressing error in PB 30
causes STOP
B2 V¥
a8 25
V&
AF
A
Addressing error in FB 5:
Call 0B 25/

ADF level

/fif
7

CcrclF

Fig. 4-4 Change of level as a result of a double call error

CPU 928B Programming Guide
C79000-B8576-C898-01 4-11

Program Processing Levels

Example 2:

If an operation code error occurs in the LZF program processing level, the
system program attempts to call the BCF level (user interface OB 29). This
has, however, already been activated by the occurrence of a parameter error
(user interface OB 30) and has not yet been completely processed. Calling the
BCF level again at this point is not permitted; the CPU changes to STOP (see
Fig. 4-5).

STOP

Op code error in FB 22
causes STOP

ENGa)
LZF

Runtime error processing OB 30:
OB 31call /

LZF level
if substitution

error 0B 27

if parameter B ‘
error BCF

Parameter error in FB 3:
OB 30 call /
BCF level

o T

CYCLE

Fig. 4-5 Double call of error level BCD

Description of the individual The individual program processing levels and the corresponding user

levels interfaces are described in more detail in the following sections:
Section 4.4 describes the program processing levels
in RESTART.
Section 4.5 describes the program processing levels
in RUN
Sections 5.6 and 5.7 describe the error levels in RESTART
and RUN.

CPU 928B Programming Guide
4-12 C79000-B8576-C898-01

STOP Mode

4.3 STOP Mode

4.3.1

Characteristics and The STOP mode is distinguished by the following features:

Indication of the Operating

Mode

User program The user program is not processed.

Retention of data If program execution has already been active, the values of counters,
timers, flags and process images are retained at the transition to the 4
stop mode.

BASP signal The BASP signal (disable command output) is active. This disables all
digital outputs.

Exception: In multiprocessor mode the BASP signal is not active
during the test mode of the coordinator - please see your System
Manual (/2/ in Chapter 13) for more information.

ISTACK If program execution was already active, there is an information field
for each interrupted program processing level in the interrupt stack
(ISTACK) that indicates the cause of the interrupt when the CPU is in
the STOP mode (see Section 5.4).

LEDs on the front panel RUN LED: off

of the CPU STOP LED: on (steady or flashing)

BASP LED: on (except in test mode)

TheSTOP LED indicates the possible causes of the current stop state.
The following paragraphs describe a continuously lit or flashing
STOP LED.

CPU 928B Programming Guide
C79000-B8576-C898-01 4-13

STOP Mode

STOP LED lit continuously

STOP LED flashes slowly
(approximately once every
two seconds)

The STOP LED flashes
quickly (approximately twice
per second)

The STOP mode was triggered by the following:
e in the single processor mode

- the mode selector was switched from RUN to STOP
the PLC STOP programmer function was activated
- adevice fault occurred (BAU, PEU)

- an OVERALL RESET was performed

e in the multiprocessor mode

- by switching the mode selector on the coordinator to STOP,
- by another CPU going into STOP as the result of a fault (a CPU
not causing a fault is lit continuously).

When the STOP LED flashes slowly, this normally indicates an error.
In the multiprocessor mode, slow flashing indicates the CPU which
caused the stop mode (owing to an error).

The STOP LED flashes slowly in the following situations:

a stop operation was programmed in the user program

- an operator error has occurred (e.g. DB 1 error, selection of an
illegal start-up type, etc.)

- programming or device errors (calling a block that is not loaded,
addressing error, timeout, operation code error etc.); the following
LEDs also light up to define the possible cause of error more
exactly:

ADF LED
QVZ LED
ZYK LED

- the END PROGRAM TEST programmer function was activated in

this CPU.

When the STOP LED flashes quickly, this is a warning that an
OVERALL RESET is being requested.

CPU 928B Programming Guide
C79000-B8576-C898-01

STOP Mode

4.3.2
Requesting an OVERALL
RESET

Request by the system
program

Operator request

CPU 928B Programming Guide
C79000-B8576-C898-01

Each time you turn on the power and perform an overall reset, the
CPU runs through an initialization routine. If errors are detected
during this initialization, the CPU changes to the STOP mode and the
STOP LED flashes quickly.

Possible errors: Contents of the RAMs are not correct.
Remedy: overall reset on the CPU

Contents of the user EPROM are not

correct
Remedy: insert programmed EPROM
and overall reset on the CPU

You must deal with the cause of the problem and then perform an
overall reset on the CPU again. OVERALL RESET is also requested
if a CPU or system error occurs. You can recognize this error by the
fact that the request appears again following an OVERALL RESET.
In this case, call your SIEMENS representative.

You request OVERALL RESET as follows:

1. Switch the mode selector from RUN to STOP.
Result:the CPU is in the STOP mode. The STOP LED is lit
continuously.

2. Hold themomentary-contactmode selector in the OVERALL
RESET position; at the same time, switch the mode selector from
STOP to RUN and back to STOP.

Result: you request an OVERALL RESET. The STOP LED
flashes quickly.

Note

If you do not want the OVERALL RESET that you requested to
be executed, carry out a COLD RESTART or MANUAL WARM
RESTART.

STOP Mode

4.3.3
Performing an OVERALL Regardless of whether you yourself or the system program requested
RESET an overall reset, you perform the OVERALL RESET as follows:

¢ Hold the modeselectorin the OVERALL RESET position; at the
same time, switch the mode selector from STOP to RUN and once
again to STOP.
Result: the OVERALL RESET is performed, the STOP LED is lit
continuously.

¢ OR: use the PG function OVERALL RESET
(If you perform an OVERALL RESET at the PG, the manual
overall reset request using the switches and selector can be
omitted. The position of the reset switch and mode selector are
then irrelevant.)
Result: the OVERALL RESET is performed. The STOP LED is
lit continuously.

Note
Once you have performed an OVERALL RESET, the only
permitted restart mode is a COLD RESTART.

CPU 928B Programming Guide
4-16 C79000-B8576-C898-01

RESTART Mode

4.4 RESTART Mode

Transition from STOP
to RUN

Restart types

Organization blocks

Data handling

BASP signal

LEDs on the front panel of the
CPU

Restart characteristics in
multiprocessor mode

CPU 928B Programming Guide
C79000-B8576-C898-01

The RESTART mode is distinguished by the following features:

The RESTART is the transition from the STOP mode to the RUN
mode.

The CPU 928B has the following restart modes:

- COLD RESTART (manual or automatic)

- WARM RESTART (manual or automatic)

- RETENTIVE COLD RESTART (manual or automatic -
only with Version -3UB12)

Following a COLD RESTART, the cyclic user program is processed
from the beginning. Following a WARM RESTART, the cyclic user
program is processed from the point at which it was interrupted.

The following organization blocks are called:
for MANUAL or AUTOMATIC COLD RESTART: OB 20

for MANUAL WARM RESTART or RETENTIVE
COLD RESTART: OB 21

for AUTOMATIC WARM RESTART or RETENTIVE
COLD RESTART: OB 22

The length of the STEP 5 start-up program in the OBs is not restricted.
The organization blocks are not time-monitored. Other blocks can be
called in the start-up OBs.

In each start-up type, the values of counters, timers, flags and process
images are handled differently.

The BASP signal (disable command output) is active. This disables all
digital outputs.

Exception: in the test mode, BASP is not activated! (Please see your
System Manual for information on the test mode.)

RUN LED: off
STOP LED: off
BASP LED: on (except in test mode)

For information on the start-up procedure in the multiprocessor mode,
refer to Section 10.1.7.

RESTART Mode

44.1
MANUAL and AUTOMATIC
COLD RESTART

When is a COLD RESTART A COLD RESTART isalways permitted provided the system is not
permitted? requesting an OVERALL RESET.

MANUAL COLD RESTART You carry out a MANUAL COLD RESTART as follows:

< Hold the mode selector in the RESET position; at the same time,
switch the mode selector from STOP to RUN.

e Orusethe PC START programmer function (COLD RESTART).

AUTOMATIC COLD AUTOMATIC COLD RESTART is triggered in the following case:
RESTART
After power failure/POWER OFF in RESTART or RUN followed by
power restore/POWER ON, the CPU runs an initialization routing and
then attempts to automatically execute a COLD RESTART as long as
DX 0 is correctly parameterized (see Chapter 7).

Prerequisite: . The switches on all CPUs and on the
coordinator must remain at RUN.

. There must have been no faults in the
initialization run.

. The CPU was not in the STOP mode
when the power was switched off.

In the case of power failure in an expansion unit (PEU signal), the
CPU goes to STOP. It remains in STOP until the PEU signal is
switched inactive and then attempts to execute an AUTOMATIC
COLD RESTART or an AUTOMATIC WARM RESTART.

CPU 928B Programming Guide
4-18 C79000-B8576-C898-01

RESTART Mode

442
MANUAL and AUTOMATIC
WARM RESTART

When is a WARM RESTART A MANUAL WARM RESTART is not permitted in the following
not permitted? situations:
e when the system is requesting OVERALL RESET

or

« after the following events:

double call of a program processing level (ISTACK: DOPP),

- OVERALL RESET (control bits: URGELOE),

start-up aborted (control bits: ANL-ABB),

STOP after the END PROGRAM TEST programmer function,

- when compressing the memory in the STOP mode,

stack overflow,

- when the user program has been modified in the STOP mode.

MANUAL WARM RESTART You carry out a MANUAL WARM RESTART as follows:
e The mode selector is in the mid-position.
e Switch the mode selector from STOP to RUN.

e Orusethe PLC START programmer function (WARM
RESTART).

CPU 928B Programming Guide
C79000-B8576-C898-01 4-19

RESTART Mode

AUTOMATIC WARM
RESTART

RETENTIVE COLD
RESTART (from Version
-3UB12)

If there is a power failure/POWER OFF during RESTART or RUN,
when the power returns again/POWER ON, the CPU performs an
initialization routine and then attempts to perform a WARM
RESTART automatically, as long as DX 0 is correctly parameterized
(see Chapter 7).

Conditions: e The selectors on all the CPUs and on the
coordinator remain set to RUN.

. No errors are detected during the initialization.

. The CPU was not in STOP before the power
failure/POWER OFF.

If there is a power failure in an expansion unit (PEU signal), the CPU
changes to STOP. It remains in this state until the PEU signal is
cleared and then attempts to perform an AUTOMATIC WARM
RESTART or AUTOMATIC COLD RESTART.

If the parameter "Retentive cold restart” is stored in DX 0, the system
program executes RETENTIVE COLD RESTART instead of WARM
RESTART. See the following section to find out how this differs to a
"normal" COLD RESTART.

CPU 928B Programming Guide
C79000-B8576-C898-01

RESTART Mode

4.4.3

Comparison of the
Different Restart
Types

Table 4-2 Comparison of the different restart types
COLD RESTART WARM RESTART RETENTIVE COLD
System program RESTART
performs
manual automatic manual automatic manual automatic
Evaluation of:
-DB1 yes yes no no no no
-DB 2 yes yes no no no no
-DXO0 yes yes no no no no
-DX2 yes yes no no no no
Initialization of:
-DBO no? no? no? no? no? no?
- 9th track yes yes no no no no
- Disable/
enable
interrupts yes yes no no yes yes
- Cycle
statistics yes yes no no no no
Deletion of:
- Timed job yes yes no no no no
- Delay yes yes yes yes yes yes
interrupt
- ISTACK/
BSTACK yes yes no no yes yes
- Process image Yes (com- | yes (com-
of the inputs | Pletely) pletely) no no no no
- Process image
of the outputs/ Yes (com- | yes (com- yes (acc. to yes (acc. to
digital 1/0 pletely) pletely) no no 9th track) | 9th track)
- Analog I/O yes yes no no no no

CPU 928B Programming Guide
C79000-B8576-C898-01 4-21

RESTART Mode

COLD RESTART WARM RESTART RETENTIVE COLD
System program RESTART
performs
manual automatic manual automatic manual automatic
Table 4-2 continued:
Deletion of
(cont.):
-IPC flags yes yes no no no no
- Semaphores yeS yeS no no no no
- F flags and
S flags yes yes no no no no
- Timers and
counters yes yes no no no no
Processing of
remaining cycle
in the case of
active BASP
signal no no yes yes no no
Restart type COLD COLD MANUAL AUTO. MANUAL AUTO.
determined by RESTART | RESTART | WARM WARM WARM WARM
OB 223 RESTART | RESTART | RESTART | RESTART
Indication of the NEUSTA NEUSTA MWA AWA ANL-6 + ANL-6 +
restart type at + AWA MWA AWA
the programmer
in the ISTACK
control bits
User interface OB 20 OB 20 OB 21 OB 21 OB 22 OB 22

YpBOis always initialized after POWER ON or OVERALL RESET

444

User Interfaces for Restart

Definition of the "9th track"

The "9th track" is a list of input and output bytes in the process image
that acknowledged at the last COLD RESTART.

If you program and load DB 1, then following a successful COLD
RESTART, the 9th track contains only the input and output bytes
listed in DB 1.

You cannot access the 9th track with STEP 5 operations.

The organization blocks OB 20, OB 21 and OB 22 are used as user
interfaces for the different restart types. You can store your STEP 5
program for each restart type in these blocks.

CPU 928B Programming Guide
C79000-B8576-C898-01

RESTART Mode

OB 20

OB 21

MANUAL WARM
RESTART

CPU 928B Programming Guide
C79000-B8576-C898-01

You can do the following in the RESTART OBs:
e setflags,

e starttimers (the start is delayed by the system program until the
user program enters the RUN mode),

e prepare the data traffic of the CPU with the I/O modules,

e execute synchronization of the CPs.

COLD RESTART:

When the CPU executes a MANUAL or AUTOMATIC COLD
RESTART, the system program calls OBd&te In OB 20, you can
store a STEP 5 program that executes preparatory stepstaning
cyclic program execution:

After OB 20 is processed, the cyclic program execution begins by
calling OB 1 or FB 0.

If OB 20 is not loaded, the CPU begins cyclic program execution
immediately after the end of a COLD RESTART (following the
system activities).

MANUAL WARM RESTART or RETENTIVE MANUAL
COLD RESTART:

When the CPU carries out a MANUAL WARM RESTART or
RETENTIVE MANUAL COLD RESTART, the system program calls
OB 21 once. In OB 21, you can store a STEP 5 program that carries
out specific activities once before cyclic program execution is
resumed.

After OB 21 is processed, for MANUAL WARM RESTART the
cyclic program execution continues with the next statement after the
point at which it was interrupted. The following conditions apply:

e The disable command output signal (BASP) remains active while
the rest of the cycle is processed. Itis only cleared at the beginning
of the next (complete) cycle.

e The process output image is reset at the end of the remaining cycle.

If OB 21 is not loaded, then at the end of a MANUAL WARM
RESTART and after performing system activities the CPU begins
program execution again at the point at which the program was
interrupted.

RESTART Mode

RETENTIVE MANUAL
COLD RESTART

OB 22

AUTOMATIC WARM
RESTART

RETENTIVE AUTOMATIC
COLD RESTART

Note
The CPU registers a power down (NAU or PEU) even when this
occurs in the STOP mode. If you then trigger a MANUAL
WARM RESTART , the CPU call©B 22 before OB 21. If,
instead, you trigger a MANUAL COLD RESTART, the previous
events are ignored by the CPU and OB2aviscalled.

If the parameter "RETENTIVE COLD RESTART" is entered in the
data block DX 0, after processing OB 21, the system program then
goes through &0LD RESTART (the CPU resumes program
execution with thefirst STEP 5 statement in OB lor

FB 0). The signal states of the flags, IPC flags, semaphore and the
block address list (DB (re retained.

AUTOMATIC WARM RESTART or RETENTIVE AUTOMATIC
COLD RESTART:

When the CPU executes an AUTOMATIC WARM RESTART or a
RETENTIVE AUTOMATIC COLD RESTART, the system program
calls OB 22 once. Here you can store a STEP 5 program which
executes specific actions once before restoration of program execution
previously interrupted in RUN.

When the power is restored, the CPU carries out the system functions
mentioned above and attempts to continue the program from the point
at which it was interrupted.

If it is loaded, OB 22 is called first. After OB 22 is processed, cyclic
program execution resumes with the next statement after the point at
which it was interrupted.

After a power failure and subsequent restoration of power, the
following conditions apply:

« The BASP signal (disable command output) remains active while
the remaining cycle is processed. It is cleared at the beginning of
the next complete cycle.

« The process output image is reset at the end of the remaining cycle.

If the parameter "RETENTIVE COLD RESTART" is entered in the
data block DX 0, after processing OB 22, the system program then
goes through a COLD RESTART (the CPU resumes program
execution with thdirst STEP 5 statement in OB lor FB 0). The

signal states of the flags, IPC flags, semaphore and the block address
list (DB 0) are retained

CPU 928B Programming Guide
C79000-B8576-C898-01

RESTART Mode

445
Interruptions in the A start-up program can be interrupted by the following:
RESTART Mode

e NAU (power failure) or PEU (power failure in expansion unit),

e activating the stop switch, the stop operation, MP-STP or PG-STP,

e program and device errors (see Section 5.6).
If you want to continue an interrupted RESTART with one of the

possible restart types, please remember the following points:

Power failure at RESTART After power returns following a power failure you must distinguish
between the situations listed in the following table:

Selected mode: AUTOMATIC WARM RESTART

The CPU is performing @0OLD RESTART (OB 20):
following the return of power after power failure, the organization block OB 22 (AUTOMATIC
WARM RESTART) is activated at the point of interruption in OB 20.

The CPU is performing IANUAL WARM RESTART (OB 21):
following the return of power after a power failure, organization block OB 22 (AUTOMATIC WAR
RESTART) is activated at the point of interruption in OB 21.

The CPU is already performing AV TOMATIC WARM RESTART (OB 22):

OB 22 is not continued after the return of power but is aborted and then called again and proces
from the beginning.

AUTOMATIC COLD RESTART

The CPU is performing a MANUAL or AUTOMATIC COLD RESTART or a MANUAL WARM
RESTART:

abandoned and the newly called OB 20 is processed.

The same rules apply to an AUTOMATIC WARM RESTART
following a PEU signal.

CPU 928B Programming Guide
C79000-B8576-C898-01 4-25

following the return of power after a power failure, no second OB 22 is activated. The interrupted

M

sed

following the return of power after power failure, the interrupted OB 20 or OB 21 is not continued, but

RESTART Mode

MANUAL WARM RESTART If the CPU goes to the STOP mode during any RESTART (stop
after aborting a RESTART switch of ADF) and you then trigger a MANUAL WARM
RESTART, the interrupted RESTART is continued from the point at
which it was interrupted. OB 21 is not activated.

MANUAL COLD RESTART If the CPU goes to the STOP mode during any RESTART and you

after aborting a RESTART then trigger a MANUAL COLD RESTART, the interrupted
RESTART is aborted and a COLD RESTART is performed (if it
exists, OB 20 is called).

Aborting RETENTIVE RETENTIVE COLD RESTART is aborted by:
COLD RESTART

e Power failure in the central controller (NAU) or in the expansion
unit (PEU),

e Stop switch, stop command, MP-STP or PG-STP
or

e Program errors and hardware faults (see Section 5.6).

An aborted RETENTIVE COLD RESTART it continued at warm
restart. Instead, mew RETENTIVE COLD RESTART is started.

Previous events and statuses are not taken into account in the selection
of restart type. The following applies especially:

e If a MANUAL or AUTOMATIC RETENTIVE COLD RESTART
is aborted by POWER OFF or power failure in the expansion unit,
a RETENTIVEAUTOMATIC COLD RESTART always takes
place at POWER ON if all other restart conditions are met.

» If aMANUAL or AUTOMATIC RETENTIVE COLD RESTART
is initiated by one of the other abort types, a new RETENTIVE
MANUAL COLD RESTART takes place.

CPU 928B Programming Guide
4-26 C79000-B8576-C898-01

RUN Mode

45 RUN Mode

Execution of the user program
Timers, counters, process
image

BASP signal

IPC flags

LEDs on the front panel of the
CPU

Program processing levels

CPU 928B Programming Guide
C79000-B8576-C898-01

When the CPU has executed a RESTART (and only then) it changes
to theRUN mode. This mode is characterized by the following
features:

The user program in OB 1 or in FB 0 is executed cyclically and
additional interrupt-driven program sections can be nested in it.

All the timers and counters started in the program are running, the
process image is updated cyclically

The BASP signal (disable command output) is inactive. All the digital 4
outputs are therefore enabled.

The interprocessor communication (IPC) flags are updated cyclically
(provided this is programmed in DB1).

RUN LED: on
STOP LED: off
BASP LED: off

Note

If an AUTOMATIC or MANUAL warm restart was executed
before the CPU went into the RUN mode, the BASP LED
remains lit until the rest of the cycle has been processed and the
process image has been updated.

TheRUN mode is only possible after tRESTART mode.

In the RUN mode there are 13 basic program processing levels, as
follows:

e CYCLE: the user program is executed cyclically

e TIMED JOB: the user program is executed at fixed
times you have programmed or once at a
fixed time (clock-controlled time
interrupt)

RUN Mode

45.1
Cyclic Program Execution

Triggering

e 9 TIME INTERRUPTS: the user program is processed at
fixed intervals specified by the
system.

e CONTROLLER time-driven processing of a preset

INTERRUPT: number of closed loop controllers.

e DELAY The user program is processed

INTERRUPT once after a preset delay

time has elapsed.

e PROCESS process interrupt-driven user
INTERRUPT: program execution.

The processing levels differ from each other in the following aspects:
« they are triggered by different events

« the user interface for each program processing level is a different
organization block or function block.

You can program all basic processing levels at the same time in a
CPU 928B. The levels are called by the system program according to
the default priority (see Section 4.2).

Most functions of a programmable controller involyelic program
execution(CYCLE program processing level). This cycle is known
as a "free cycle", i.e. after reaching the end of the program, the next
cycle is executed immediately (see Fig. 4-6).

If the CPU completes the restart program without errors, it begins
cyclic program execution.

CPU 928B Programming Guide
C79000-B8576-C898-01

RUN Mode

Principle The system program activities are as follows:
from restart

|

triggers the cycle time monitoring

v

updates the IPC flag inputs

updates the process input image
(P1I)

calls the cyclic user program (OB 1
or FB 0)

User program

including nesting of
the other

basic processing levels

outputs the process output image

(PIQ)

updates IPC flag outputs

system activities, e.g.
loading or clearing blocks,

compressing blocks. . .

Fig.4-6 Cyclic program execution

User interface: OB 1 or FB 0 The system program calls organization block OB 1 or function block
FB 0 as the user interface regularly during cyclic program execution.
The system program processes the STEP 5 user program in OB 1 or
FB 0 from the beginning through the various block calls you have
programmed. Following the system activities, the CPU starts again
with the first STEP 5 statement in OB 1 (or in FB 0).

In OB 1, you program the calls for program, function and sequence
blocks that are to be processed in your cyclic program.

CPU 928B Programming Guide
C79000-B8576-C898-01 4-29

RUN Mode

If you have a short time-critical user program in which you do not
require structured programming, then progf@n0. Since you use

the total STEP 5 operation set in this block, you do not require block
calls and can reduce the runtime of your program.

Note

If both OB 1 and FB 0 are programmed, only OB 1 is called by
the system program. If you use FB 0 as the user interface, it must
not contain parameters.

Interrupt points Cyclic program execution can be interruptedlatk boundariesby
the following:

e process interrupt-driven program execution,
» closed loop controller processing,

 time-driven program execution.

Note
You can program DX 0 to enable these interruptions to occur
operation boundaries (see Chapter 7).

Cyclic program execution can be interrupted@dration boundaries
or aborted completely as follows:

 if a device or program error occurs,
» by operator intervention (PG function, stop switch, MP-STP),

» by the STOP operation.

ACCUs as data storage The arithmetic registers ACCU 1, 2, 3 and 4 of the CPU 928B can be
used as data storage outside the cycle (from the end of one program
cycle to the beginning of the next).

CPU 928B Programming Guide
4 -30 C79000-B8576-C898-01

RUN Mode

4.5.2

Time-Driven Program Time-driven processing occurs when a time signal from a clock or
Execution internal clock pulse prompts the CPU to interrupt the current program
and execute a specific program. After executing this program, the
CPU returns to the point at which the previous program was
interrupted and continues execution. This way, particular program
sections can be inserted automatically into the cyclic program at a
specified time.

You can trigger time-driven program execution in different ways, as
follows:

» One-off triggering after a freely selectable delay time in the
millisecond range, alelay interrupt" (DELAY INTERRUPT 4
program processing level). The OB 6 organization block is called
via this interrupt.

» Triggering using a freely selected time base or once only at an
absolute time, a "clock-driven time interrupt" (program processing
level TIMED JOB). This interrupt calls organization block OB 9.

» Triggering in 9 different time bases with a range from 10 ms to 5
seconds by "time interrupts" (program processing levels TIME
INTERRUPTS). An organization block (OB 10 to OB 18) is
assigned to each time interrupt. These have a fixed cycle, i.e. the
time between two program starts is fixed.

Delay interrupt (from Small time intervals with a resolution of 1 ms can also be specified
Version -3UB12) with the delay interrupt of the CPU 928B. When the set time has
elapsed, the system program calls O&h6e

Resolution A delay interrupt is generated by calling the special function
organization block OB 153 (see Section 6.12). As soon as the delay
time parameterized with OB 153 has elapsed, the system program
interrupts the current program execution and calls OB 6. After this,
program execution is resumed at the interrupt point.

User interface OB 6 In the case of a delay interrupt, OB 6 is called as the user interface. In
OB 6 you store a STEP 5 program to be executed in this case. If OB 6
has not been loaded, program execution will not be interrupted.

CPU 928B Programming Guide
C79000-B8576-C898-01 4-31

RUN Mode

Interruptions

Special features

With the default setting, the TIMED INTERRUPTS level has the
highest priority of the basic levels (can be modified by changing the
parameter assignment in DX 0).

In timed-controlled program execution, the servicing of the delayed
interrupt has highest priority.

Owing to the distribution of priorities, the processing of the delayed
interrupt cannot be interrupted by any other user program.

» Adelayed interrupt is only processed in the RUN mode. Delayed
interrupts owing in the STOP mode, durpgver down or
START-UP araliscarded

e Agenerated delayed alarm (= OB 153 call was processed) is
retained in the transition to the STOP mode and during POWER
OFF.

» If you generate a new delayed interrupt, i.e. call OB 153 with
new parameters, a previously set delayed interrupt is cancelled.
A delayed interrupt currently being processed is continued.
This means that onlyne delayed interrupt is valid at any one
time.

» If adelayed interrupt occurs without the previous one being
completely processed, the new interrupt is discamethyed
interrupts are not checked for collisions!

» Note the special functions OB 122 and OB 142 with which you
can disable or delay the servicing of delayed interrupts.

CPU 928B Programming Guide
C79000-B8576-C898-01

RUN Mode

Clock-driven time interrupts The CPU 928B has a battery-backed clock (central back-up via the
power supply of the central controller), which you can set and read
out using a STEP 5 program. Using this clock, you can execute a
program section time-driven.

While the delay interrupt is used for high-speed jobs, the clock-driven
time interrupt is especially suitable for processing affigabs or jobs
occurringcyclically at large time intervals such as hourly, daily or
every Monday. When the set time is reached, the system program
calls OB 9.

Triggering A clock-driven time interrupt (timed job) is generated by calling the
special function organization block OB 151 (see Section 6.10). Once
the time transferred to OB 151 (time of day, date) has been reached, 4
the timed job is processed. This can be programmed to occur once
(absolute time) or be repeated (time base). Once a job becomes due
for processing, the system program interrupts the current program and

calls OB 9 (program processing level TIMED JOB). Following this,
the program is resumed at the point at which it was interrupted.

Example:

You want to trigger a time interrupt at the
55th second every minute.

Setting using OB 151:

SECONDS: 55
JOB TYPE: 1 (every minute)

565 6'55 7’55

| | | i
‘ I CallOB 9 CallOB 9 CallOB 9

Generate
clock-driven
time interrupt
(call OB 151)

CPU 928B Programming Guide
C79000-B8576-C898-01 4 -33

RUN Mode

User interface: OB 9

Interruptions

Special features

OB 9 is called as the user interface for a clock-driven time interrupt.
You store a STEP 5 program in OB 9 that is to be processed whenever
it is called. If you do not load OB 9, program execution is not
interrupted.

The execution of a clock-controlled time interrupt can be interrupted
atblock boundaries or operation boundaries (if selected in DX 0) by
the following:

e processing of a process interrupt
e processing of a delay interrupt
» processing of a closed loop controller interrupt.

The processing can be interrupte@@ération boundariesor aborted
completely by the following:

» the occurrence of a hardware fault or program error,
» operator intervention (PG function, stop switch, MP-STP),

» the stop operation.

e Aclock-driven time interrupt is only processed in the RUN mode.
Clock-driven time interrupts that occur in the STOP mode, when
the power has failed or during RESTART diecarded providing
the trigger time did not occur during STOP (see above).

» A clock-driven time interrupt generated following OVERALL
RESET and COLD RESTART (= OB 151 call) is retained during
a WARM RESTART and following POWER OFF/POWER ON,
providing the trigger time did not occur during STOP (see above).

» If you generate a new clock-controlled time interrupt, i.e. you call
OB 151 with new timer values, an already existing clock-driven
time interrupt is cancelled. A currently active clock-driven
interrupt is continued. Onlgne clock-driven time interrupt is ever
valid at one time.

» If a clock-driven time interrupt occurs when a previous
clock-driven time interrupt has not been processed or not been
completely processed, the new time interrupt is discarded.
Clock-driven time interrupts are not checked for collisions.

« You can use the special functions OB 120 and OB 122, to disable
or delay the processing of clock-driven time interrupts.

CPU 928B Programming Guide
C79000-B8576-C898-01

RUN Mode

TIME INTERRUPTS Program execution in fixed time bases
In the CPU 928B, you can execute up to 9 different time-driven

programs, each program being called at a different time interval.

Triggering A time interrupt is triggered automatically at a fixed time interval if
the corresponding OB is programmed.

User interfaces When a particular time interrupt occurs, the corresponding
organization block is activated as the user interface at the next block
boundary (or operation boundary).

Assignment of the timeinterrupt time to the OBs:

Table 4-3 Assignment "Time interrupt time - called OB"

Time base Organization block called
10 ms OB 10 Falling priority
20 ms OB 11
50 ms OB 12
100 ms OB 13
200 ms OB 14
500 ms OB 15
1sec OB 16
2 sec OB 17
5 sec OB 18

For example, program the program section to be inserted into the
cyclic program every 100 ms in OB 13.

Note
OBs with shorter time bases have a higher priority and can
interrupt OBs with longer time bases.

Time since last interrupt Whenever a time interrupt OB is called (OB 10 to OB 18) ACCU 1
processed contains the number of time units that have occurred since the last
time interrupt OB call, as follows:

ACCU 1 := number of time units - 1

If, for example, ACCU 1 contains the number "5" when OB 11 is
called, this means that 120 ms (6 time units) have elapsed since
OB 11 was last called. As long as there is no collision of time
interrupts, a "0" is transferred in ACCU 1.

CPU 928B Programming Guide
C79000-B8576-C898-01 4-35

RUN Mode

Interrupt points Time-driven program execution can be interrupted eithigloak
boundaries (default) or abperation boundaries(programmed in
DX 0) by the following:

e processing of a process interrupt

e processing of a delay interrupt

» processing of a closed loop controller interrupt
» renewed processing of a time interrupt

Processing can be interrupted at operation boundaries or aborted
completely by the following:

» the occurrence of a hardware fault or program error
» operator intervention (PG function, stop switch, MP-STP)

» the stop operation STP.

Note
Time-driven program execution cannot be interrupted by the
same time interrupt (collision of time interrupts).

Collision of time interrupts If a time interrupt OB has not yet been completely processed and is
(WECK-FE) called a second time, a collision occurs. A time interrupt collision also
occurs if an OB is called a second time and the first call has not been
processed. This is possible when the time interrupts can only interrupt
the cyclic program at block limits, particularly if your STEP 5
program contains blocks with long runtimes.
If a collision of time interrupts occurs, the error program processing
level WECK-FE is activated and the system program Cels33as
the user interface. In OB 33, you can program a specific reaction to
this problem.

If OB 33 is not loaded, the CPU goes into Stop if an error occurs.
Then WECK-FE is indicated on the programmer in the control bits
"Output ISTACK" screen. The level ID of the relevant time interrupt
(LEVEL) is indicated in the ISTACK.

CPU 928B Programming Guide
4 - 36 C79000-B8576-C898-01

RUN Mode

When the system program calls OB 33, it transfers additional
information to ACCU 1 and ACCU 2 which provides more detail
about the first error to occur.

Table 4-4 Collision of time interrupt identifiers

Error identifier Explanation

ACCU-1- | ACCU-2-

L L
1001H 001H Collision of time interrupts with OB 10 (10 ms)
1001H 0014H Collision of time interrupts with OB 11 (20 ms)
1001H 0010H Collision of time interrupts with OB 12 (50 ms)

1001H 0010H Collision of time interrupts with OB 13 (100 ms)
1001H OOOEH Collision of time interrupts with OB 14 (200 ms)
1001H 000CH Collision of time interrupts with OB 15 (500 ms)
1001H 000AH Collision of time interrupts with OB 16 (1 sec)

1001H 0008H Collision of time interrupts with OB 17 (2 sec)

1001H 0006H Collision of time interrupts with OB 18 (5 sec)

The identifier in ACCU-2-L is the level identifier (see Section 5.3) of
the time interrupt which caused the error.

Continuing program If you require the program to continue if a collision of time interrupts
execution occurs, either program the block end statement "BE" in OB 33 or
change the default in DX 0 so that the program is continued if a
collision occurs and OB 33 is not programmed.
After OB 33 is processed, the program is continued from the point at
which it was interrupted.

CPU 928B Programming Guide
C79000-B8576-C898-01 4 -37

RUN Mode

4.5.3
CLOSED LOOP

CONTROLLER INTERRUPT:

Processing Closed Loop
Controllers

Triggering

User interface: standard
function block "closed loop
controller structure R64"

Note

With respect to time-driven program execution, remember the
special function®B 120, OB 121, OB 122ndOB 123with
which you can disable or delay the processing of time interrupt
for a particular program section. (This is possible either for all
programmed time interrupts or for individual time interrupts.)

o

The "faster" a time-driven program processing level is, the greater
the danger of time interrupt collisions. If you have time interrup
with short time bases (e.g. the 10 ms and the 20 ms time
interrupts) it is normally necessary to select interruption at
operation boundaries. This means that the closed loop controller
interrupt and the process interrupt must also be set to interrupt|at
operation boundaries (see Chapter 7, Assigning Parameters tg
DX 0).

(7]

In the CPU 928B, apart from cyclic, time and process interrupt
program execution, it is also possible to process closed loop
controllers. You select intervals (= sampling time) at which the cyclic
or time-driven program execution is interrupted and the controller is
processed. Following this, the CPU returns to the point at which the
cyclic or time-driven program was interrupted and continues
execution.

A closed loop controller interrupt is triggered when the sampling time
you have selected elapses.

System program actvities
» Itmanages the user interface for closed loop controller processing.

« Itupdates the controller process image.

When processing a controller, the R64 standard function block is
called as the user interface. In conjunction with the controller
parameter assignment block DB 2, this allows up to 64 controllers to
be processed.

You assign a specific data block for each controller. In data block DB
2, known as the "controller list" you specify which controllers are to
be processed by the system program at which point in time. DB 2 is
reserved for this task.

(When assigning parameters, starting up and testing the R64 standard
FB, you are supported by a special program package: "COMREG",
see Catalog ST 59.)

CPU 928B Programming Guide
C79000-B8576-C898-01

RUN Mode

Interrupt points Closed loop control processing can be interrupted eithgo et
boundaries (default) or abperation boundaries(programmed in
DX 0), by the following:
» processing of a process interrupt,

» processing of a delay interrupt.

Processing can be interruptedperation boundariesor aborted
completely by the following:

» the occurrence of a hardware fault or program error,

« operator intervention (PG function, stop switch, MP-STP),

» the stop operation STP.

454

PROCESS INTERRUPT: Interrupt-driven program execution involves the S5 bus signal of an
Interrupt-Driven Program interrupt-capable digital input module (e.g. 6ES5 432-4UAXxX) or a
Execution suitable IP module that causes the CPU to interrupt program

execution and to process a specific program section. On completion of
this program, the CPU returns to the point at which execution was

k interrupted and continues from there.
« »

The evaluation of a process interrupt can be triggered either by a
signal level or signal edge. You can write a program to either disable,
delay or enable the interrupt. OB 2 can interrupt the current program
either atoperation orblock boundaries(when you program DX 0).

Triggering The active state of an interrupt line on the S5 bus triggers the process
interrupt. Depending on the slot in the rack, each CPU is assigned one
of the interrupt lines (for more detailed information, refer to Chapter 4
in the System Manual).

User interface OB 2 When a process interrupt occurs, OB 2 is called as the user interface.
In OB 2, you program a specific program to be processed if a process
interrupt occurs.

If OB 2 isnot programmed, the cyclic program is not interrupted. No
interrupt-driven program execution takes place.

CPU 928B Programming Guide
C79000-B8576-C898-01 4 -39

RUN Mode

Interrupt points

Multiple interrupts

Process interrupt signal

Process interrupt-driven program execution@aly be interrupted by
the following:

e a program or device error (at operation boundaries)
« operator intervention (PG function, stop switch, MP-STP),

» the stop operation.

Note

Interrupt-driven program execution cannot be interrupted by
time-driven program execution or byfarther process
interrupt .

If further process interrupts occur during the interrupt-driven program
execution, these argnored until OB 2has been completely
processed(including all the blocks called in OB 2).

The CPU then returns to the point of interruption and executes the
program until the next block boundary. Only then is a new process
interrupt accepted and OB 2 called again. This means that a
permanently active interrupt cannot totally block cyclic program
execution. (This is not the case if you selected process interrupts at
operation boundaries in DX 0.)

Note
Multiple interrupts are not detected.

OB 2 can also be called when the signal state of the interrupt line
is passive again when the bloakundary is reached.

Edge-triggered process interrupts occurring during the execution
of OB 2 and remaining active for a shorter time than OB 2 are not
detected (if level triggered).

The signal state of the interrupt signal between its becoming
active and the completion of OB 2 (BE operation) is irrelevant.

In the default (DX 0), the process interrupt signal for the CPU 928B is
level-triggered. i.e. the active state of the interrupt line sets a request
which causes OB 2 to be processed at the next block or operation
boundary (depending on the setting of DX 0).

CPU 928B Programming Guide
C79000-B8576-C898-01

RUN Mode

A process interrupt is also recognized and processed when the
interrupt signal is no longer active when the bloolrdary is
reached.

Interrupt *I

B

line

Process interrupt

OB 2

(at block boundaries)

Cycle

OB 2

L

inactive

active

OB 2

OB 2

A = block boundaries

Fig. 4-7 Process interrupt, level triggered

When it is called, OB 2 is processed completely. If the interrupt signal

is still active or active once again at the end of OB 2, a block is

processed in the cyclic program and OB 2 is then called again. If the
level is no longer active, OB 2 is only called again at the next change

of signal state (from inactive to active).

Active interrupt signal statésfore processing the block end
operation (BE) of OB 2 are irrelevant.

Process interrupt signal:
edge-triggered

You can select this setting by assigning parameters to DX 0. After
OB 2 has been processed, a new process interrupt can only be

triggered by a signal state change (from inactive to actf&x
processing the block end command (BE) of OB Zimactive-active
signal change"of the interrupt signal must follow to generate a

process interrupt.

A process interrupt is also recognized and processed when the
interrupt is no longer active at the block boundary.

Interrupt I

o

inactive

line

Process interrupts
(at block boundaries)

Cycle

OB 2

OB 2

,,,,, active

OB 2

A = block boundaries

Fig. 4-8 Process interrupt, edge-triggered

CPU 928B Programming Guide
C79000-B8576-C898-01

RUN Mode

Disabling interrupt-driven
processing

455

Nested Interrupt-Driven and
Time-Driven Program
Execution

Priorities for interrupt and
time-driven program execution

The system program inserts an interrupt-driven program into the
cyclic program at a block boundary or at a STEP 5 operation
boundary.

An interruption of this type can have a negative effect if a cyclic
program section has to be processed within a specific time (e.g. to

achieve a specific response time) or if a sequence of operations should

not be interrupted (e.g. when reading or writing related values).

If a section of the user program shoutit be interrupted by
interrupt-driven processing, you can use the following program
procedures:

» Program this section so that it does not contain a block change and
retain the default in DX O (process interrupts at block limits).
Program sections that do not contain block changes cannot be
interrupted.

» Program the disable process interrupts (IA) operation. Enable
interrupt processing with the enable interrupts (RA) operation. No
process interrupt driven program execution can take place between
these two operations.

IA and RA are only allowed in function blocks (supplementary
operation set).

* You can use the special functions OB 120 and OB 122 to disable
or delay the processing of process interrupts for a particular
program section.

If a process interrupt occurs during time controlled program
execution, the program is interrupted at the next interrupt point (block
or operation boundary) and the process interrupt is processed.
Following this, the time-controlled program is completed.

If a time interrupt occurs during interrupt-driven program execution,
the interrupt-driven program execution is completed first before the
time-driven program execution is started.

CPU 928B Programming Guide
C79000-B8576-C898-01

RUN Mode

If a process interrupt and a time interrupt ocguarultaneously the
process interrupt is processed first at the next interrupt point. After
this is completed, the pending time interrupt is then processed.

Fig. 4-9 is a schematic representation of how program execution is
interrupted at block boundaries by time-controlled and
program-controlled interrupt processing.

OB 1 PB . ‘
A e Interrupt point at which

interrupt or time-driven
program execution can

\ / E— normally be inserted

|

— into cyclic, interrupt or
e | | time-driven program

] execution. Time-driven

¢ | L cyclic program execution can

‘ only be interrupted by
a process interrupt and

— /./ | not vice-versa.

OB 9/0B 13

L time-driven

interrupt-driven

Fig. 4-9 Interrupt-driven program execution at block boundaries

CPU 928B Programming Guide
C79000-B8576-C898-01 4 -43

RUN Mode

Response time

The response time to a time interrupt request corresponds to the
processing time of a block or a STEP 5 operation (depending on the
selected preset). If, however, process interrupts are still in the queue
when cyclic program execution is interrupted, the time-driven
program is only processed after all pending process interrupts have
been completely processed.

The maximum response time between the occurrence and processing
of a time interrupt is then increased by the processing time of the
process interrupts. If you want to exclude as far as possible the chance
of a collision for a particular time interrupt OB xy, remember the
following rules:

A+B+C<D where A = the sum of the processing times of
all higher priority program
processing levels (process,
controller, time interrupt OBs)

B = processing time of the time
interrupt OB xy

C = runtime of the longest block of all
lower priority processing levels

D = time base of the time interrupt
OB xy

Note

If you run your program not only cyclically but also time and
interrupt-driven, you run the risk of overwriting flags.

This can occur if you use flags as intermediate flags both in the
cyclic and in the inserted time-driven or interrupt-driven
programs and the cyclic program is interrupted by a time or
interrupt-driven program.

For this reason, save the signal states of the flags in a data block
at the beginning of time or interrupt-driven program execution
and rewrite them into the (doubly assigned) flags at the end of the
interrupt.

Four special organization blocks are available for this purpose:
OB 190 and OB 192 "transfer flags to data block® and OB 191
and 193 "transfer data fields to flag area" (refer to the relevant
section).

To avoid double assignment of flags, you can also use the S-flags
for most applications. Special "saving procesti for flags are
then no longer necessary (there are enough S flags available).

CPU 928B Programming Guide
C79000-B8576-C898-01

Interrupt and Error Handling 5

Contents of Chapter 5

5.1

5.2

5.3

531
5.3.2

5.3.3

5.4

5.5

551
5.5.2
5.5.3
554

5.6
5.6.1

5.6.2

5.6.3

Frequent Errors in the User Program

Error Information 5-5
Control Bits and Interrupt Stack 5-10
CoNtrol DItS o 5-11
ISTACK CONteNt. . .. o e e 5-18
Explanation of the ISTACK SCIreent e e e 5-19
Example of Error Diagnosis using the ISTACK. 5-25
Error Handling using Organization Blocks 5-29
Errors during RESTARTo 5-32
DBO-FE (DB O ErrOrs) . . . oot e e e e 5-33
DBI1-FE (DB 1 ErrOrS) . . . oottt e e e e e e 5-34
DB2-FE (DB 2 ErTOrS) . . . ot i e e e e e 5-35
DXO-FE (DX 0 Or DX 2 EITOIS) . .o ottt et e e e e e e e e 5-36
Errors in RUN and in RESTART. e 5-38
BCF (Operation Code Errors)t e 5-40
Substitution error (OB 27)ot 5-40
Operation code error (OB 29). 5-41
Parameter error (OB 30)ottt e 5-42
LZF (RUNTIME EITOIS) . .. ottt e e e e e e e e e e e 5-43
LZF - calling a block thatis notloaded (OB 19) 5-43
Load/transfer error (OB 32)ot 5-44
Other runtime errors(OB 31)t 5-45
ADF (Addressing EITOr).o e e 5-53

CPU 928B Programming Guide
C79000-B8576-C898-01 5-1

Contents

5.6.4

5.6.5
5.6.6
5.6.7
5.6.8
5.6.9

QVZ (TIMEOUL EITOr) . . oot e e e e e e 5-53
QVZ during direct access viathe S5bus. 5-53
QVZ during PIl update and transfer of the IPC flags. 5-54

ZYK (Cycle Time Exceeded EITOr).ottt e e 5-56

WECK-FE (Collision of Time Interrupts).ot e 5-57

REG-FE (Controller EITOr)ttt e e e e e e 5-58

ABBR (ADOI). . .o ot 5-60

Communication Errors (FE-3)o 5-61

CPU 928B Programming Guide
C79000-B8576-C898-01

Interrupt and Error Handling 5

This chapter explains how to avoid errors when planning and
programming your STEP 5 programs.

You will see what help you can get from the system program for 5
diagnosing and reacting to errors and which blocks you can use to

program reactions to errors.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-3

Frequent Errors in the User Program

5.5

Frequent Errors in the User Program

The system program can detect faulty operation of the CPU, errors in
the system program processing or the effect of user errors in the
program.

This section contains a list of errors most likely to occur when you
first run your user program.

You can avoid these errors easily by remembering the following
points when you write your STEP 5 program:

» When specifying byte addresses for I/0s, make sure that the
corresponding modules are plugged into the central controller or
the expansion unit.

« Make sure that you have provided correct parameters for all
operands.

« Make sure that outputs, flags, timers and counters are not
processed at different points in the program with operations that
counteract each other.

» Make sure that all data blocks called in the program exist and are
long enough.

» Check that all blocks called are actually in the memory.

» Be careful when changing existing function blocks. Check that the
FBs/FXs are assighed the correct operands and that the actual
operands are specified.

» Make sure that timers are scanned only once per cycle (e.g. A T1).

» Make sure that scratchpad flags (intermediate flags) are saved by
interrupt and time-driven programs and are loaded again on
completion of the inserted program when they are required by
other blocks (e.g. standard FBs).

CPU 928B Programming Guide
C79000-B8576-C898-01

Error Information

5.6 Error Information
If an error occurs during system start-up or during cyclic execution of
your program, there are various sources of information to help you
find the problem, as follows:
e LEDs on the front panel of the CPU
» |ISTACK interrupt stack and control bits
e system dataRS 3, RS 4 and RS 80
« error identifiers in ACCU 1 and ACCU 2
» BSTACK block stack
The following sections describe how to evaluate the information
provided by these sources and how to use the error information to

analyze a problem.

LEDs on the Front Panel of If the CPU goes over to the STOP mode when you do not want it to,

the CPU check the LEDs on the front panel. They can indicate the cause of the
problem.
LED display Meaning
STOP LED lit continuously The various states of

the STOP LED indicate
specific causes of

STOP LED flashes quickly interruptions and errors
(see section 4.1).

STOP LED flashes slowly

ADF LED lit continuously Addressing error
QVZ LED lit continuously Timeout error
ZYK LED lit continuously Cycle time exceeded error

CPU 928B Programming Guide
C79000-B8576-C898-01 5-5

Error Information

OUTPUT ISTACK
programmer online function

System data RS 3 and RS 4

You can get information about the status of the control bits and the
contents of the interrupt stack (= ISTACK) using the ISTACK
programmer online function.

When the CPU goes over to the STOP mode, the system program
enters the following information in tH8 TACK . This information is
required for a warm restart:

 register contents
e accumulator contents
e STEP 5 address counter SAC
and
» condition codes
These entries can be very helpful for error diagnosis.

Before the actual ISTACK is output on the programmer, the status of
thecontrol bits is displayed. The control bits mark the current

operating status and certain characteristics of the CPU and the user
program and provide additional information on the cause of an error.

You can use the "Output ISTACK" function in the STOP, RESTART
and RUN modes; however, in RESTART and RUN you only get
information via the control bits and not via the contents of the
ISTACK.

The meaning of the control bits and the structure of the interrupt stack
are described in more detail in Section 5.3.

If your CPU returns to the stop mode owing to an error during the
RESTART, the cause of the error is defined in greater detail in the
system data words RS 3 and RS 4 (see Section 5.5). These involve
errors detected by the system program when it sets up the address list
in DB 0 or evaluates DB 1, DB 2, DX 0 or DX 2.

CPU 928B Programming Guide
C79000-B8576-C898-01

Error Information

The two data words are stored at the following absolute memory

addresses:
system data word RS 3: KH = EA03
system data word RS 4. KH = EA04

The error identifier in system data word RS 3 tells ywoiat type of
error has occurred.
System data word RS 4 tells yahere the error has occurred.

The error identifiers are in the KH data format.

Analyzing system data words Using the online function INFO ADDRESS (KH = EA03 or EA04)
RS 3 and RS 4 on the you can read out the contents of the two system data words directly
programmer and discover the cause of the error.

System data RS 80 If the system program detects a serious system error, it sets the control
bit INF in the interrupt stack (see Section 5.3) and enters an additional
error identifier in the data format KH in system data word RS 80.

The system data word RS 80 has the absolute memory address
KH = EA 50. You can read it out in the same way as the system data

RS 3 and RS 4.
Error identifiers in ACCU 1 If errors occur in the STEP 5 program executioRESTART or in
and ACCU 2 theCYCLE for which there is a particular organization block as user

interface, the system program automatically enters additional error
information in the accumulators ACCU 1 and ACCU 2 when the
organization block is called. These entries also define the cause of the
error more exactly (see Section 5.6).

The error identifier in ACCU 1 tells youhat type of error has
occurred.

The error identifier in ACCU 2 (if entered) tells yatere the error
occurred.

The error identifiers are in the KH data format.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-7

Error Information

Analysis of ACCU 1 and
ACCU 2 on the programmer

Analysis of ACCU 1 and
ACCU 2 with STEP 5

OUTPUT BSTACK online
function

BSTACK information

Using the online function OUTPUT ISTACK, you can read the
contents of the two accumulators directly out of the ISTACK to find
out the exact cause of the error.

Since the error identifiers are written to ACCU 1 and ACCU 2
automatically when an error organization block is called, you can take
these identifiers into account when you program your error OB.

This allows you to program specific reactions to various errors in your
organization block depending on the error identifier transferrred to it.

The PG online function OUTPUT BSTACK gives you information in
STOP about the contents of the block stack (BSTACK - see
Section 3.2 "Nesting blocks").

Starting from OB 1 or FB 0, the BSTACK contains a list of all blocks
called in sequence and not completely processed when the CPU went
into the STOP mode. Since the BSTACK is filled from the bottom,

the block on the uppermost level of the BSTACK display contains the
block that was last processed and in which the error occurred.

Thetop line contains the following information:

Information Meaning

BLOCK NO Type and number of the block that called the
faulty block

BLOCK ADDR | apsolute start address of the calling block in
the program memory

RETURN ADDR | apsolute address of the first STEP 5 operation
of this block in the user memory.

REL ADDR |Relative address (= difference "RETURN
ADDR - BLOCK ADDR") of the next

operation to be processed in the calling block.
(You can display relative addresses on a
programmer in the mode "disable input"/key
switch and with S5-DOS from Stage IV
upwards using the function key "addresses").

DB NO Number of the last data block opened in the
calling block

DBADDR | Absolute start address in the program memary
of the last data block opened in the calling

block (address of data word DW 0)

CPU 928B Programming Guide
C79000-B8576-C898-01

Error Information

Example:

Evaluating the BSTACK function:

BLOCK NO |BLOCK ADDR| RETURN ADDR |REL ADDR| DBNO |DB ADDR
OB 23 0063 0064 0001 13 0078
FB S 006A 0072 0008 13 078
FB 6 008A 0091 0007 100 098
OB 1 009D 009E 0001

In the example above, the stoppage occurred in OB 23 when processing the
STEP 5 statement at the absolute memory address 0064 - 1 = 0063".

OB 23 (QVZ error OB) was called in FB 5 at the relative address "0008 -
1=0007".

The data block DB 100 was opened in FB 6. When the CPU went into the
stop mode, data block DB 13 was valid.

Data block DB 13 was opened in FB 5.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-9

Control Bits and Interrupt Stack

5.7

Control Bits and Interrupt Stack

Using the PLC INFO and OUTPUT ISTACK online programmer
functions, you can analyze the operating status, the characteristics of
the CPU and the user program and any possible causes of errors and
interruptions.

Note
You can display theontrol bits in any mode. You can display
thelSTACK only in theSTOP mode.

Thecontrol bits indicate the current and previous operating status
and the cause of the problem.
If several errors occurred, the control bits indicdtef them.

ThelSTACK indicates the location of the interruption (addresses)
with the current condition codes, the accumulator contents and the
cause of the problem.

If several errors occurredpaultiple level interrupt stack is
constructed as follows:

depth 01 = last cause of problem,
depth 02 = next to last cause of problem etc.
If an ISTACK overflow occurs (more than 13 entries) the CPU

goes into the STOP mode immediately. If this happens, you must
perform a POWER OFF/POWER ON and a cold restart.

The meanings of the individual abbreviations in the control bits and in
the ISTACK are described below.

Note

The text on the screen of your programmer depends on the P
software used. It may differ from the screen represented here.
Nevertheless, the description of the individual positions on the
screen in these programming instructions is valid.

CPU 928B Programming Guide
C79000-B8576-C898-01

Control Bits and Interrupt Stack

571
Control Bits When you display the ISTACK on the PG the statuses of the control
bits are shown on the first screen page (see Fig. 5-1).

CONTROL BITS

>>STP<< STP-6 FE-STP BARBEND PG-STP STP-SCH STP-BEF MP-STP
>>ANL<< ANL-6 NEUSTA MW A AWA ANL-2 NEUZU MWA-ZUL
X X X
>>RUN<< RUN-6 EINPROZ BARB OB1GEL FBOGEL OBPROZA OBWECKA
X X X
32KWRAM 16KWRAM 8KWRAM EPROM KM-AUS KM-EIN DIG-EIN DIG-AUS
X X X
URGELOE URL-IA STP-VER ANL-ABB UA-PG UA-SYS UA-PRFE UA-SCH
DX0-FE FE-22 MOF-FE RAM-FE DBO-FE DB1-FE DB2-FE KOR-FE
NAU PEU BAU STUE-FE ZYK QvVz ADF WECK-FE
BCF FE-6 FE-5 FE-4 FE-3 LZF REG-FE DOPP-FE

o

Fig. 5-1 Example of the first screen form page "OUTPUT ISTACK": control bits

The control bits (>>STP<<, >>ANL<< and >>RUN<<) and the
control bits in the first lines of the first screen page mark the current
or previous status of the CPU and provide information about certain
features of the CPU and your STEP 5 program.

You can display the control bits in all modes. You can, for example,
make sure that organization block OB 2 is loaded and that interrupt
control program execution is possible at any time.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-11

Control Bits and Interrupt Stack

The following tables explain the meaning of the individual bits.

Table 5-1 Meaning of the control bits in the >>STP<< line

>>STP<< line (CONTROL BITS)

Control bit Meaning

»STP« |CPU is in the STOP mode

STP-6 |Not used

1%

~—

FE-STP | Error stop: stop mode caused by NAU (power failure
PEU (peripherals not ready), BAU (battery not ready
STUEB (BSTACK overflow), STUEU (ISTACK

overflow), DOPP (double call error) or CPU fault

BARBEND | program test end: stop mode after PROGRAM TEST
END online function (COLD RESTART required)
Is not set if the END PROGRAM TEST function was
executed with the CPU in the STOP mode.

PG-STP |pG-STOP: stop mode due to command from PG

STP-SCH |STOP switch: stop mode due to mode selector in
position STOP

STP-BEF Stop operation:

-stop mode caused by STEP 5 operation "STP"

-stop mode after stop command from system
program, if error

-organization block is not programmed

MP-STP Multiprocessor STOP:
-reset switch on the coordinator in STOP position of
-different CPU in the STOP mode in multiprocessing

CPU 928B Programming Guide
5-12 C79000-B8576-C898-01

Control Bits and Interrupt Stack

CPU 928B Programming Guide
C79000-B8576-C898-01

to

Table 5-2 Meaning of the control bits in the >>ANL<< line
>>ANL<< line (CONTROL BITS)
Control bit Meaning
»ANL« |CPU is in the RESTART mode
ANL-6
+ RETENTIVE MANUAL COLD RESTART
MWA
ANL-6
+ RETENTIVE AUTOMATIC COLD RESTART
AWA
NEUSTA |MANUAL COLD RESTART requested (STOP) or
was last RESTART type (RESTART/RUN)

MWA IMANUAL WARM RESTART requested (STOP) or
was last RESTART type (RESTART/RUN)

AWA | AUTOMATIC WARM RESTART after power failure
is requested (STOP) or was last RESTART type
(RESTART/RUN)

MWA |AUTOMATIC COLD RESTART was requested

+ (STOP) or was last RESTART type

AWA | (RESTART/RUN)

ANL-2 | pouble function:

- is set after PROGRAM TEST END (in contrast
BARBEND in the first line, it is also set when
PROGRAM TEST END is called in the STOP
mode; prevents WARM RESTART)

- is set after "compressing in the STOP mode";
prevents WARM RESTART

NEUZU |cOLD RESTART permitted (STOP) or COLD
RESTARTwaspermitted when the last RESTART
took place (RESTART/RUN)

MWA-ZUL

MANUAL WARM RESTART permitted (STOP) or
COLD RESTARTwas permitted when the last
RESTART took place (RESTART/RUN)

Control Bits and Interrupt Stack

UJO

Table 5-3 Meaning of the control bits in the >>RUN<< line
>>RUN<< line (CONTROL BITS)
Control bit Meaning
»RUN« |cpU is in the RUN mode (cyclic processing is active
RUN-6 | Not used
EINPROZ | single processor mode
BARB |PROGRAM TEST online function is active
OBIGEL |Organization block OB 1 is loaded in the user mem
Cyclic program execution is determined by OB 1
FBOGEL | Function block FB 0 is loaded in the user memory.
Cyclic program execution is determined by FB 0 if n
OB 1 is loaded. If FB 0 and OB 1 are both loaded, C
1 determines the cyclic program execution
OBPROZA|process interrupt organization block OB 2 is loaded
i.e. process interrupt-driven program execution is
possible
OBWECK | Time interrupt organization block loaded, i.e.
time-driven program execution is possible
Table 5-4 Meaning of the control bits in lines 4 and 5
Lines 4 and 5 (CONTROL BITS)
Control bit [Meaning
32KWRAM | yser memory submodule is a RAM with 32%02
words
16KWRAM | yser memory submodule is a RAM with 16%02
words
8KWRAM |yser memory submodule is a RAM with 832
words
EPROM | yser memory submodule is an EPROM
KM-AUS | address list for IPC flag outputs from DB 1 exists
KM-EIN | address list for IPC flag inputs from DB 1 exists
DIG-EIN | address list for digital inputs exists

CPU 928B Programming Guide
C79000-B8576-C898-01

~

Iy .

Control Bits and Interrupt Stack

CPU 928B Programming Guide
C79000-B8576-C898-01

Lines 4 and 5 (CONTROL BITS)

Control bit Meaning

DIG-AUS | address list for digital outputs exists

Table 5-4 continued:

URGELOE | Oyerall reset performed on CPU (COLD RESTART
required)

URL-IA" | overall reset being performed on CPU

STP-VER |CcpPU caused CP stop

ANL-ABB |RESTART aborted (COLD RESTART required)

UA-PG PG has requested OVERALL RESET

UA-SYS System program has requested OVERALL RESET
RESTART possible); OVERALL RESET must be
performed

UA-PRFE |OVERALL RESET requested owing to CPU error

UA-SCH | OVERALL RESET requested at hardware switch:
perform an OVERALL RESET or select a restart
type if you do not want to perform the requested
OVERALL RESET

The control bits in the following table indicate errors that can occur in
the RESTART (e.g. during an initial COLD RESTART) and RUN

(e.g. during time-driven program execution) modes.

If several errors occugll causes of interruptions that have occurred

up to now (and have not yet been processed) are displayed in the last
three lines of the control bitSee also system data word RS, this
contains the ICMK (interrupt condition code group word, 16 bits), in
which all errors not yet processed are also entered (Section 8.3.5).

Control Bits and Interrupt Stack

Table 5-5 Meaning of the control bits in lines 6 to 8
Lines 6 to 8 (CONTROL BITS)
Control bit Meaning
DX0-FE | parameter assignment error in DX 0 or DX 2
FE-22 INot used
MOD-FE |Error in contents of user submodule (OVERALL
RESET required)
RAM-FE |Error in contents of system program RAM
or of DB RAM (OVERALL RESET required)
DBO-FE | structure of block address lists in DB 0 incorrect
DB1-FE |structure of the address lists in DB 1 for process
image updating is incorrect:

- DB 1 not programmed and coordinator
plugged in or multiprocessor operation
required

- structure or contents of DB 1 incorrect

DB2-FE |Error evaluating the parameter assignment data blo

DB 2 of controller structure R64

KOR-FE |Error in data exchange with the coordinator
NAU Power failure in the central controller
PEU Peripherals not ready = power failure in expansion
unit
BAU Battery not ready = back-up battery failure in centra
controller
STUE-FE |interrupt or block stack overflow (nesting depth too
great; COLD RESTART required)
ZYK |Cycle monitoring time exceeded
QVZ | Timeout during data exchange with I/Os
ADF

Addressing error with inputs or outputs:
error caused by accessing the process
image, in which 1/O modules were addressed
that were not plugged in, defect or not

specified in DB 1 at the last COLD RESTART

CPU 928B Programming Guide
C79000-B8576-C898-01

Control Bits and Interrupt Stack

CPU 928B Programming Guide
C79000-B8576-C898-01

Lines 6 to 8 (CONTROL BITS)

Control bit

Meaning

WECK-FE

Collision of time interrupts:
an attempt was made to call a particular time
interrupt OB a second time while or before first
call was processed

Table 5-5 cont

inued:

BCF Operation code error:
- substitution error: processed STEP 5 operation
cannot be substituted
- operation code error: processed STEP 5 operati
is incorrect
- parameter error: parameter of the processed
STEP 5 operation is incorrect
FE-6 |Not used
FE-5 |Indicates a serious system error, additional
information in RS 80
FE-4 |power down error:
processing of a previous power failure (NAU)
by the system program did not run correctly;
WARM RESTART is therefore not possible
FE-3 |interface error (SSF)
LZF Runtime error:
- called block not loaded
- load/transfer error with data blocks
- other runtime errors
REG-FE |Error processing the controller structure R64
in the CYCLE
DOPP-FE

Double call error:
a still active error program processing level
(ADF, BCF, LZF, QVZ, REG, ZYK) is
activated a second time (COLD RESTART
required)

Control Bits and Interrupt Stack

572
ISTACK Content If the CPU is in the stop state, you can display the content of the
ISTACK on the screen after the control bit display by pressing the
enter key. When the CPU goes into the STOP mode, the system
program enters all the information it needs in this ISTACK for a
warm restart.
You can use the entries in this ISTACK to see what kind of error
occurred and where it occurred in the program.
If the stop state was causedaygingleerror, onlyonelevel of the
ISTACK information is displayed. Witkeveralerrors, the
corresponding numberof ISTACK levels are output (DEPTH 01,
DEPTH 02, etc.). At all levels, only one error is marked as the
CAUSE OF INTERRUPT.
If several errors have occurred DEPTH 01 marks the error detected
immediately before the change to the stop state.
Fig 5-2 is an example of a PG display of the ISTACK content.
INTERRUPT STACK
DEPTH 02
OP-REG: C70A SAC: 00F3 DB-ADD: 0000 BA-ADD: 0000
BLK-STP: 0002 FB-NO.: 226 DB-NO.: OB-NO.:
REL-SAC: 0006 DBL-REG.: 0000
LEVEL: 0004 ICMK: 0200 ICRW: 0000
ACCUL: 0000 C464 ACCU2: 0000 0OFF ACCU3: 0000 0000 ACCU4: 0000 0000
KLAMMERN: KE1 111 KE2 100 KE3 111
CONDITION CODE: ccl CCo OVFL OVFLS ODER ERAB
X
STATUS VKE
X X
CAUSE OF INTERR.: NAU PEU BAU MPSTP ZYK Qvz
ADF STP BCF S-6 LzZF REG-FE
X

K STUEB STUEU WECK DOPP J

Fig. 5-2 Example of a screen page "OUTPUT ISTACK"

CPU 928B Programming Guide
5-18 C79000-B8576-C898-01

Control Bits and Interrupt Stack

Explanation of the ISTACK

screen
DEPTH Information level of the ISTACK when more than one error has
occurred:
DEPTH 01 = last cause of stop to occur
DEPTH 02 = next to last cause of stop to occur
DEPTH13 = (maximum depth)
Information about the error The following table contains information about the ISTACK IDs with

which the statement in the user program can be found which caused
the CPU to change to the STOP mode.

Table 5-6 Meaning of the ISTACK IDs concerning the point of error

Information about the error

ISTACK ID Meaning

OP-REG Operation register:

Contains machine coder@t word) of the
instruction processed last in an interrupted
program processing level (see list of
operations, list of machine codes).

BLK-STP |Block stack pointer:

contains the number of elements entered
in the block stack at the time when

the interruption of this processing level
occurred

LEVEL Z Specifies the level of program processing that was
interrupted

Z:0002: COLD RESTART
0004: CYCLE
0006: TIME INTERRJUPT /5 sec (OB 18
0008: TIME INTERRJUPT / 2 sec (OB 17
000A: TIME INTERRUPT / 1 sec (OB 16)
000C: TIME INTERRUPT /500 ms (OB 1%)
O00OE: TIME INTERRUPT /200 ms (OB 14)
0010: TIME INTERRJUPT /100 ms (OB 13
0012: TIME INTERRUPT /50 ms (OB 12
0014: TIME INTERRUPT/20ms (OB 11
0016: TIME INTERRUPT/10ms (OB 10
0018: TIMED JOB

CPU 928B Programming Guide
C79000-B8576-C898-01 5-19

Control Bits and Interrupt Stack

Information about the error

ISTACK ID

Meaning

Table 5-6 continued:

LEVEL Z
(continued)

Z: 001A
001C

O01E:
0020:
0022:
0024:
0026:
0028:

002A:

002C:

002E:
0030:
0032:
0034:
0036:
0038:
003A:
003C:
003E:
0040:
0042:
0044

0046:

: not used

: CL CONTROLLER
INTERRUPT

not used

DELAY INTERRUPT

not used

PROCESS INTERRUPT

not used

RETENTIVE MANUAL COLD
RESTART

RETENTIVE AUTOMATIC COLD
RESTART

transition to stop mode after stop
in multiprocessing,

stop switch or PG STOP
interface error

collision of time irgrrupts

CL controller error

cycle error

not used

operation code error

runtime error

addressing error

timeout

not used

not used

MANUAL WARM

RESTART

AJTOMATIC WARM
RESTART

SAC

STEP address counter:

contains thabsdute address of the last
operation of an interrupted program
processing level to be processed in the
program memory

if an error occurs, SAC indicates the operati

that caused it.

before the first operation of a processing

level is executed, SAC is set to "0"

CPU 928B Programming Guide

C79000-B8576-C898-01

Control Bits and Interrupt Stack

CPU 928B Programming Guide
C79000-B8576-C898-01

Information about the error

ISTACK ID

Meaning

...NO.

Block type and number of the last block
processed

Table 5-6 continued:

REL-SAC

Relative STEP address counter:
contains theelative address (related to
the block start address) of the last
operation to be executed in the lakick
processed (you can display relative
addresses on a programmer using the
PG mode "input disable"/key-switch
or with S5-DOS from stage IV using
a function key or you can output the
block on a printer)

ICMK

Interrupt condition code group word:
ICMK indicates all the causes of interruption
that have occurred up to now and have
not yet been completely processed (see
"System Data Memory Assignment",
Section 8.3.5)

[72)

ICRW

Interrupt condition code reset word (see "Syste
Data Memory Assignment”, (Section 8.3.5)

DB-ADD

Absolute start address of the data block opened |
in the program memory (DW 0)
(DB-ADD = 0000, if no DB was opened)

DB-NO.

Number of the data block opened last

DBL-REG

Length of the data block opened last

BA-ADD

Absolute address in the program memory of the
operation to be processed next in the block last
called

...No.

Block type and number of the block last
called

m

ast

Control Bits and Interrupt Stack

Condition code

Cause of interrupt

Information about the error

ISTACK ID

Meaning

ACCU1..4

Contents of the calculation registers at the time of
interruption:
in the event of certain errors, the system program
writes error identifiers into

ACCUs 1 and 2 when the interruption occurs.
These identifiers define the cause of the
interruption more exactly

Table 5-6 continued:

BRACKETS

Number of bracketed levels:
"KEx abc"
x=1to 7 levels
a = OR (OR see condition code bits)
b = RLO (result of logic operation, see
condition code bits)
c=1:A(
c=0:0(

see Section 3.5

The following abbreviations (ISTACK IDs) represent the most
important causes of interruptions.

TAd®PY calBEAGT e AUsTOMIHHREEURTe marked are those that have

occurred in the currently displayed program processing level (see

LEVEL).

The causes of interruptions represent the contents of the interrupt
condition code group word (ICMK, 16 bits, see Section 8.3.5). Some
of the entries here are identical to those in the control bits.

Cause of interrupt

ISTACK [Meaning (called error OB)

ID

NAU Power supply failure in central controller

PEU Peripherals not ready = power failure in expansion unit

CPU 928B Programming Guide
C79000-B8576-C898-01

Control Bits and Interrupt Stack

Cause of interrupt

ISTACK
ID

Meaning (called error OB)

BAU

Battery not ready = back-up battery failure (central
controller)

MPSTP

Multiprocessor STOP:

- reset switch on the coordinator in STOP positiof

- STOP at a different CPU in multiprocessor
operation

Table 5-7 continued:

ZYK

Cycle monitoring time exceeded

QVz

Timeout during data exchange with I/O peripherals

ADF

Addressing error for inputs and outputs with proces
I/O image

STP

- stop mode caused by setting the stop switch to
STOP

- stop mode caused by command from PG

- stop mode after processing the STEP 5 operatic
"STP"

- stop mode after stop command from system prg
if error organization block is not programmed

nor

n

n

gram,

BCF

Operation code error: error detected during the

operation decoding

- substitution error: processed STEP 5 operation
cannot be substituted

- operation code error: processed STEP 5 operat
is incorrect
parameter error: parameter of the processed
STEP 5 operation is not permitted

S-6

Interface error

LZF

Runtimeerror: error detected during the execution
of an operation:

- called block not loaded

- load/transfer error with data blocks

- other runtime errors

CPU 928B Programming Guide
C79000-B8576-C898-01

Control Bits and Interrupt Stack

Cause of interrupt

ISTACK |Meaning (called error OB)
ID

REG-FE |Error processing the controller structure R64 in the
CYCLE

STUEB |Block stack overflow:
nesting depth too great; required
measure: COLD RESTART)

STUEU ||nterrupt stack overflow:
nesting depth too great; required
measure: COLD RESTART)

Table 5-7 continued:

WECK [Collision of time interrupts:

before or during the processing of a time
interrupt OB, an attempt was made to
call the same OB a second time

DOPP IDouble call error

a still active error program processing level
(ADF, BCF, LZF, QVZ, REG, ZYK) is
activated a second time (COLD RESTART
required)

CPU 928B Programming Guide
5-24 C79000-B8576-C898-01

Control Bits and Interrupt Stack

5.7.3
Example of Error Diagnosis
using the ISTACK

Example 1:

Fig. 5-3 illustrates the structure of the ISTACK in conjunction with the
interruptions that have occurred.

- Die Programmbearbeitungsebene ZYKLUS (OB 1) wird unterbrochen durch
das Auftreten eines Interrupts.

- Following this, the program processing level TIME INTERRUPT is
activated and OB 13 is processed.

- The TIME INTERRUPT level is exited owing to the occurrence of a process
interrupt, the PROCESS INTERRUPT level is activated and OB2is
processed.

- An incorrect addressing operation activates level ADF where OB 25 is
processed. In the error handling program, the user has programmed a
stop operation (STP); the CPU aborts program execution.

STP
l Depth 01
ADE 0B25 ﬁ Level: 003C
= S s
— | X
| | !
‘ ‘ ‘ ‘ Depth 02
Level: 0024
PROCESS ‘ 0OB2 eve
INTERRUPT ‘ ‘ ‘ ADF
= ‘ X
\ ! |
\ \ |
| | | \ Depth 03
‘ Level: 0010
TIME
INTERRUPT oB13
|
| \
| | !
| | | | Depth 04
‘ E Level: 0004
CYCLE OB1
-
Program processing levels ISTACK

Fig. 5-3 Example 1 of evaluating the ISTACK

Before the CPU finally goes into the stop mode, a total of four

different program processing levels have been interrupted. If you

display the ISTACK, you obtain a four level ISTACK, first the ISTACK
with depth 01, in which the identifier of the program processing level

last interrupted (=ADF) is marked. You can now "page down" through the

ISTACK until you reach the ISTACK with depth 04, that represents the

CYCLE program processing level, that was interrupted first

CPU 928B Programming Guide
C79000-B8576-C898-01 5-25

Control Bits and Interrupt Stack

Example 2:

In this example the CPU detects an addressing error when executing the

"A I x.y" operation in OB 1. This leads to the processing of OB 25. As a
result of an STP operation in PB 5, the CPU goes into the STOP mode (see
Fig. 5-4).

Fig. 5-4 Example 2 of evaluating the ISTACK

Continued on next page

CPU 928B Programming Guide
5-26 C79000-B8576-C898-01

Control Bits and Interrupt Stack

Continuation 1 of Example 2:

Two interrupted program execution levels lead to the creation of a
two-level ISTACK (see Figs 5-5 and 5-6):

INTERRUPT STACK

DEPTH 01
OP-REG: STP SAC: 1007 DB-ADD: BA-ADD: 0106
BLK-STP: 0003 PB-NO.: 5 DB-NO.: 16 OB-NO.: 25
REL-SAC: 0007 DBL-REG.:

LEVEL: 003C ICMK: 0300 ICRW: 0000
ACCUL:
CONDITION CODE....
CAUSE OF INTERR.:

STP

X

J

Fig. 5-5 Example 2 of evaluating the ISTACK: 1st ISTACK level

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01 5-27

Control Bits and Interrupt Stack

Continuation 2 of Example 2:

INTERRUPT STACK

N

DEPTH 02
OP-REG: A Ixy SAC:
BLK-STP: 0001 OB-NO.:

REL-SAC:
LEVEL: 0004 ICMK:
ACCUL:
CONDITION CODE:...
CAUSE OF INTERR:.:

ADF

X

001A

000A
0200

DB-ADD:

DB-NO.: 16
DBL-REG.:

ICRW: 0000

BA-ADD: 0000

Fig. 5-6 Example 2 of evaluating the ISTACK: 2nd ISTACK level

CPU 928B Programming Guide
C79000-B8576-C898-01

Error Handling using Organization Blocks

5.4 Error Handling using Organization Blocks

When the system program detects an error, it calls the appropriate
organization block to handle it. You can determine how the CPU
reacts by programming the relevant organization block.
Depending on how you program the organization block, you can
achieve the following reactions:

» normal program processing is continued

» the CPU goesto the STOP mode

and/or

» aspecial error handling program is run through. -

Organization blocks exist for the following causes of errors:

Table 5-8 The organization blocks called in case of errors

Cause of error Organization| Reaction of CPU
block called if OB is not
programmed D
Call of a block that is not loaded (LZF) OB 19 STOP
Timeout in the user program during access to I/O OB 23 none
modules (QVZ)
Timeout during update of the process image and during transfer @B 24 none
IPC flags (QV2Z)
Addressing error (ADF) OB 25 STOP
Cycle time exceeded (ZYK) OB 26 STOP
Substitution error (SUF) OB 27 STOP
Mode selector set to STOP, PG function PC STOP, OB 28 STOP
STOP from S5 bus (multiprocessor operation)
Operation code error (BCF) OB 29 STOP
Parameter error (BCF) OB 30 STOP
Other runtime errors (LZF) OB 31 STOP
Load/transfer error with data blocks (TRAF) OB 32 STOP
Collision of time interrupts (WECK-FE) OB 33 STOP

CPU 928B Programming Guide
C79000-B8576-C898-01

Error Handling using Organization Blocks

Cause of error Organization| Reaction of CPU

block called if OB is not
programmed D

Table 5-8 continued:

Error processing the controller structure R64 (REG-FE) OB 34 STOP

Communication error on the 2nd serial interface (FE-3) OB 35 none

D with DX 0 defaults

Response of organization
block not loaded

No interruption of cyclic
program execution

STOP mode

If the organization block isot loadedthe response depends on the
particular error:

If a timeout occurs and OB 23, OB 24 or OB 35 is not loaded, cyclic
program execution isot interrupted. The CPU does not react.

If you want the CPU to go into the STOP mode when a timeout
occurs, the organization block must contain a stop statement and be
completed with the block end statement BE or DX 0 must have
suitable parameters assigned.

Program for STOP:

STP
:BE

When any other error occurs, the CPU goes into the STOP mode
immediately if you did not program the appropriate organization
blocks.

If, in exceptional circumstances, (e.g. during system installation) you
do not want one of these errors to interrupt cyclic program execution,
a block end statement in the appropriate organization block is
sufficient or assign suitable parameters to DX 0.

Program for uninterrupted operation:

‘BE

Note

Organization bloclOB 28is an exception: here, the CPU alway:!
goes to the STOP mode regardless of whether you have loade
OB 28 or not.

CPU 928B Programming Guide
C79000-B8576-C898-01

Error Handling using Organization Blocks

Interruptions during
processing of error
organization blocks

CPU 928B Programming Guide
C79000-B8576-C898-01

If you do not want to program the corresponding organization block,
you can prevent the transition to the STOP mode by assigning
appropriate parametersdata block DX 0.

After the system program calls the appropriate organization block, the
user program in that block is processed.

If another error occurs while the first organization block is being
processed, the program is interrupted at the next operation boundary
and the appropriate second organization block is called, just as in
cyclic program execution.

The organization blocks are processed in the order in which they are
called. The nesting depth for error organization blocks depends on the
following:

e The type of error

No organization blocks belonging to the same program processing
level can be nested within each other. (See Chapter 6 for the
assignment of error OBs to the program processing level).

When processing OB 27 (program processing level BCF) it is, for
example, possible to nest OB 32 (program processing level LZF),
however, OB 29 or OB 30 (also BCF) cannot be nested in OB 27.

If two blocks from the same program processing level are called,
the CPU changes immediately to the STOP mode.

* The number of program processing levels currently active at
any one time

For each activated program processing level, the system program
requires extra memory space to set up the ISTACK when an
interrupt occurs. If there is not enough memory left, an ISTACK
overflow results.

If there is an ISTACK overflow, the CPU changes immediately to
the STOP mode.
e The number of blocks called at any one time

If there is a BSTACK overflow, the CPU changes immediately to
the STOP mode.

Errors during RESTART

5.5 Errors during RESTART

Causes of interrupt and
causes of error

During initialization and during a restart, causes of interruptions and
errors can lead to the restart program being aborted and put the CPU
into the STOP mode. Interruptions occurring during the restart
program (organization blocks OB 20, 21 and 22) are handled just as in
the CYCLE.

Exception: if a STOP occurs during the restar, organization block
OB 28 is called.

There isno way of respondingvia a user interface (error OB) to the
causes of interrupt and causes of error listed in the table below.

Table 5-9 Causes of error and causes of interruptin RESTART

Control bit Explanation
or ID in
ISTACK
STP Stop command from system program (at FE-STP)
or in the user program
BAU Failure of the back-up battery on the central
controller
NAU Failure of the power supply in the central
controller
PEU Failure of the power supply in an expansion
unit

STUEU Stack overflow in interrupt stack (ISTACK)
STEUB Stack overflow in the block stack (BSTACK)

DOPP-FE Double call of an error program processing
level

RAM-FE Error during initialization: the contents of the
operation system RAM or the DB RAM are
incorrect

-

MOD-FE Error during initialization: the contents of the use
submodule (RAM or EPROM submodule) are no
correct

DBO-FEV Error setting up the block address list
(DB 0)

DB1-FEY Error evaluating DB 1 to set up the address list for
updating the process image

—

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors during RESTART

Control bit Explanation
orID in
ISTACK

Table 5-9 continued:
DB2-FEY Error evaluating DB 2 of the controller structure
R64
DX0-FE Y Error evaluating data block DX 0
or
Error evaluating data block DX 2

D for further explanations: see the following pages

551
DBO-FE (DB 0 Errors) Errors when setting up the block address list (data block DB 0).

DB 0 is set up by the system program following POWER ON. If a
DB 0 error occurs, you will find error identifiers in the system data
words RS 3 and RS 4 that define the error in greater detail.

Table 5-10 IDs for DB 0 errors

Error identifier Explanation
RS 3 RS 4
8001HyyyyH Wrong block length
yyyy = address of the block with the wrong
length

8002H yyyyH Calculated end address of the block in the
memory is wrong
yyyy = block address

8003HyyyyH Invalid block identifier
yyyy = address of the block with the incorrect
identifier
8004H yyyyH Organization block nuper too high

(permitted: OB 1 to OB 39)
yyyy = address of the block with the incorrect
number

8005H yyyyH Data block number O (permitted: DB 1 to

DB 255)

yyyy = address of the block with the incorreg
number

—

CPU 928B Programming Guide
C79000-B8576-C898-01 5-33

Errors during RESTART

55.2

DB1-FE (DB 1 Errors) Error evaluating DB 1 to set up the address list for updating the
process image.
« DB 1 does not exist in multiprocessor operation,

or

 incorrect DB 1 address list during COLD RESTART.

Note

In multiprocessor operation, the system checks whether DB 1
exists inall types of restart. DB 1 parameters are, howexrey,
evaluated during a COLD RESTART.

Table 5-11 IDs for DB 1 errors

Error identifier Explanation
RS 3 RS 4

0410H yyyyH | lllegalidentifier:

- header identifier missing or incorrect
(correct KC MASKO01)

- identifier illegal (permitted KH DEQO,
DAO00, CE00, CAQO, BB0O)

- end identifier missing or incorrect (correg
KH EEEE)

yyyy = illegal identifier

—

0411H yyyyH | "Digital inputs”, number of addresses illegal
(permitted 0...128)
yyyy = illegal number of addresses

0412H yyyyH | "Digital outputs”, number of addresses illegal
(permitted 0...128)
yyyy = illegal number of addresses

0413H yyyyH | "IPCflag inputs’, number of addresses illega
(permitted 0...256)
yyyy = illegal number of addresses

0414H yyyyH | "IPC flag outputs’, number of addresses
illegal (permitted 0...256)
yyyy = illegal number of addresses

0415H yyyyH llegal number of timers
(permitted: 256)
yyyy = illegal number of timers

0419H yyyyH Timeout with digital inputs
yyyy = address of the unacknowledged
input byte

CPU 928B Programming Guide
5-34 C79000-B8576-C898-01

Errors during RESTART

Error identifier Explanation
RS 3 RS 4

Table 5-11 continued:

041AH yyyyH | Timeout with digital outputs
yyyy = address of the unacknowledged
output flag byte

041BH yyyyH | Timeout with IPC flag input
yyyy = address of the unacknowledged
IPC flag byte

041CH yyyyH | Timeout with IPC flag output
yyyy = address of the unacknowledged
IPC flag byte

55.3
DB2-FE (DB 2 Errors) Errors in the evaluation of the parameter assignment data block DB 2
for controller structure R64 (controller initialization).

If a DB 2 error occurs, system data words RS 3 and RS 4 contain error
identifiers that define the error in greater detail.

Table 5-12 IDs for DB 2 errors

Error identifier Explanation
RS 3RS 4

0421H DByyH | Data block not loaded
yy = number of the data block that is not
loaded

0422H FByyH | Function block not loaded
yy = number of the function block that is not
loaded

0423H FByyH | Function block not recognized
yy = number of the unrecognized function
block

0424H FByyH | Function block loaded with wrong PG
software
yy =number of the function block

0425H DByyH | Wrong controller data block length
yy = number of the data block

0426H — There is not enough memory space in the
DB-RAM to shift the controller DBs from the
user EPROM to the DB-RAM

CPU 928B Programming Guide
C79000-B8576-C898-01 5-35

Errors during RESTART

554
DXO0-FE (DX 0 or DX 2
Errors)

Errors evaluating data block
DX 0

Errors evaluating data block
DX 2

Note

DX 0 and DX 2 errors have a common control bit (DX0-FE) in
the control bit screen form.

In the event of a DX 0 error you will find error identifiers in the
system data words RS 3 and RS 4 that define the error in more detail.

Table 5-13 IDs for DX O errors

Error identifier
RS 3 RS 4

Explanation

0431H yyyyH

lllegal identifier:

- header identifier missing or incorrect
(correct KC MASKXO0)

- field identifier illegal

- end identifier missing or incorrect (corre
KH EEEE)
yyyy = illegal identifier

0432H yyyyH

lllegal parameter
yyyy = illegal parameter

0434H yyyyH

lllegal number of tirrs (permitted: 0...256)
yyyy = incorrect number of timers

0435H yyyyH

lllegal cycle time monitorinpermitted: 1 ms
to 13000 ms)
YYyy = incorrect time value

Parameter assignment for the second serial interface.

Data block DX 2 is set up by the system program after a COLD
RESTART. In the event of a DX 2 error, you will find error identifiers
in the system data words RS 3 and RS 4 that define the error in more

detail.

Table 5-14 IDs for DX 2 errors

Error identifier
RS 3 RS 4

Explanation

0451H —

DX 2 length (without block header) < 4 worg
is not permitted

0452H yyyyH

DX 2 length (without block header) is too
short for link type
yyyy = length DX 2

CPU 928B Programming Guide
C79000-B8576-C898-01

s

Errors during RESTART

Error identifier Explanation
RS 3 RS 4

Table 5-14 continued:

0453H yyyyH | Linktype illegal
yyyy = link type
0454H xx00H | Data identifier for stat. parameter set illegal

(not equal to 44H, 58H)
xx = data identifier

0455H xxyyH | Block for static parameter set illegal
xx = identifier / yy = DB number

0456H xxyyH | Static parameter set does not exist
xx = identifier / yy = DB number

0457H yyyyH | Statigparameter set too short
yyyy = nhumber of the non-existent DW

0458H xx00H | Data identifier for dynamic parameter invali
(44H, 58H, O0H)
xxH = data identifier

0459H yyyyH | Block for dynamiparameter set illegal
xx = identifier / yy = DB number

045AH xx00H | Data identifier for send/job mailbox invalid
(not equal to 44H, 58H, 00H)
xx = data identifier

045BH xxyyH | Block for send/job mailbox illegal
xx = identifier / yy = DB number

045CH xx00H | Data identifier for receive mailbox invalid
(not equal to 44H, 58H, 00H)
xx = data identifier

045DH xxyyH | Block for receive mailbox illegal
xx = identifier / yy = DB number

045EH xx00H | Data identifier for coordination bytes invalid
(not equal to 44H, 58H, 4DH)
xx = identifier

045FH xxyyH | Block for coordination bytes illegal
xx = identifier / yy = DB number

0460H xxyyH | Block for coordination bytes does not exist
xx = identifier / yy = DB number

0461H yyyyH | DW for coordination bytes does not exist
yyyyH = number of the non-existent DW

CPU 928B Programming Guide
C79000-B8576-C898-01 5-37

Errors in RUN and in RESTART

5.6 Errorsin RUN and in RESTART

Errors which lead direct to
STOP

In the RUN mode, cyclic, time-driven or interrupt-driven program
execution or controller processing can be interrupted at operation
boundaries by the occurrence of certain errors or faults, e.g. power
failure in the central controller or block stack overflow.

Interruptions during initialization and in the RESTART mode cause
the restart program to be aborted and the CPU goes into the STOP
mode or calls the organization block intended for this error.
Interruptions occurring during the start-up program are handled in the
same way as in the CYCLE.

A distinction is made between problems that cause the CPU to go
directly to the STOP mode (e.g. STUEU) and problems that cause the
system program to call certain organization blocks that you can
program instead of the CPU going directly to the STOP mode (e.g.
ADF).

There is no way of responding via a user interface (error OB) to the
causes of interrupt and causes of error listed in the table below.

If these errors occur, an ISTACK is created in which the interrupt is
displayed.

Causes of error and causes of interrupt in RESTARTRA,

Table 515\ ich lead direct to STOP
Control bit or Explanation
ID in ISTACK
STP STOP caused by the system program
(machine error), when an error OB is not
loaded, or there is a stop operation in the user
program
BAU Failure of the back-up battery in the central
controller
NAU Failure of the power supply to the central
controller
PEU Failure of the power supply to one or more
expansion units
STUEU Stack overflow in the interrupt stack
(ISTACK), nesting depth too great
STUEB Stack overflow in the block stack (BSTACK),
nesting depth too great
DOPP-FE Double call of an error program processing
level

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

Errors- which cause an error
OB to be called
Causes of error and causes of interrupt in RESTART and

Table 516 2N, which lead direct to STOP
Control bit Explanation OB no.
orID in
ISTACK
BCF Operation code error:
- substitution error OB 27
- operation code error OB 29
- parameter error OB 30
LZF Runtimeerror:
- call for a block that is not loaded | OB 19
- transfer error with DBs OB 32
- other runtime errors OB 31
ADF Addressing error:
- when accessing the process image OB 25
QvzZ Timeout:
- in the user program when accessingOB 23
I/O modules OB 24
- when updating the process image
ZYK Cycle error
- the cycle monitoring time was OB 26
exceeded

WECK-FE | Collision of two time interrupts:
- error processing a time interrupt | OB 33

REG-FE Controller error:

- error processing a controller OB 34
interrupt
ABBR Abort:
- (see Section 5.6.8) OB 28
S-6 Communication error:

- during data exchange via the secand®B 35
serial interface

The following sections describe each of these causes of errors in more
detail.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-39

Errors in RUN and in RESTART

5.6.1
BCF (Operation Code
Errors)

Substitution error
(OB 27)

An operation code error occurs when the CPU either cannot interpret
or cannot execute a STEP 5 operation in the user program. All
permissible operation codes are listed in the list of operations.

The operation that caused the operation code error is not executed. If
the relevant BCF organization block is loaded, this is called,
processed and the user program is then continued starting with the
next operation. If the BCF-OB is not loaded, the CPU goes into the
STOP mode.

The following operation code errors can occur. In each case, the error
OB named is called:

If an operation with a formal operand is to be executed in a function
block, the CPU replaces this formal operand with the actual operand
contained in the function block call.

The CPU recognizes an illegal substitution. The system program
interrupts the processing of the user program and calls organization
block OB 27, if it is loaded.

ACCU 1 contains additional information that defines the error in more
detail.

Table 5-17 BCF substitution error

Error identifier Explanation

ACCU-1-LACCU-2-L

1801H — Substitution error with the DO RS
operation

1802H — Substitution error with the DO DW, DO
FW operations

1803H — Substitution error with the DO=, DI
operations

1804H — Substitution error with the L=, T=
operations

1805H — Substitution error with the A=, AN=, O=,
ON=, ==, S= and RB= operations

1806H — Substitution error with the RD=, LD=,
FR=, SFD=, SD=, SSU; and SEC=
operations

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

Operation code error An operation code error is detected by the CPU during the execution
(OB 29) of a STEP 5 program when an operation is programmed that does not
belong to the STEP 5 set of operations for the CPU 928B (e.g. RU and
SU operations can be programmed at the programmer but cannot be
interpreted by th€PUs 928B928, 922 (R processor) and 921
(S processor) in the S5 135U).

If the CPU detects an illegal operation code, the execution of the user
program is interrupted and organization bl 29is called, if itis
loaded

When OB 29 is called, ACCU 1 contains additional information that
defines the error in greater detail.

Table 5-18 BCF operation code error

Error identifier Explanation
ACCU-1-LACCU-2-L

1811H _ Operation with illegal OP code

1812H — lllegal OP code for an operation in which
the high byte of the first operation word
contains the value 68H

1813H — llegal OP code for an operation in which
the high byte of the first operation word
contains the value 78H

1814H — lllegal OP code for an operation in which
the high byte of the first operation word
contains the value 70H

1815H — llegal OP code for an operation in which
the high byte of the first operation word
contains the value 60H

Caution

An operation code error shouldt be acknowledged: the CPU
does not recognize whether the incorrect operation is a single
word or multiword operation. Once the CPU has processed
OB 29, it attempts to continue the program at the next operatio

word. If this is the second word of a multiword operation, it eithe

detects a further operation code error or executes this word as|a

valid operation, which can cause a varietpafgram errors.

2]
=

CPU 928B Programming Guide
C79000-B8576-C898-01 5-41

Errors in RUN and in RESTART

Parameter error
(OB 30)

An illegal parameter occurs when an operation is programmed with a
parameter that is not permitted for the particular CPU (e.g. calling a
reserved data block), or when a non-existent special function is called.

If the CPU detects an illegal parameter, the system program interrupts
the execution of the user program and calls organization BiBc&o,
if it is loaded.

When OB 30 is called, ACCU 1 contains additional information that
defines the error in greater detail.

Table 5-19 BCF parameter error

Error identifier Explanation
ACCU-1-LACCU-2-L (illegal parameter in...)
1821H _ cDBO,1,2
182BH — JU(C) OB 0
182CH — JU(C) OB > 39: special function does

not exist
182DH _ CXDX0,CXDX1,CXDX?2
182EH _ L FW/T FW/L PW/T PW/LL OW/T
OW/L DD/T DD/DO FW 255
182FH _ L IW/T IW/L QW/IT QW 127
1830H _ L FD/T FD 253, 254, 255
1831H _ L ID/T ID/L QD/T QD 125,
126, 127
1832H _ RLD/RRD/SSD/SLD 33-255
1833H _ SLW/SRW/LIR/TIR 16-255
1834H _ SED/SEE 2-255
1835H _ A=/AN=/0=/ON=/S=/RB=/==
RD=/FR=/SP=/SD=/SEC=/SSU=/
SFD=/L=/LD=LW=/T=0, 127-255
1836H _ DO=/LWD= 0, 126-255
1837H — A S/O S/S S/=S/AN S/ON S/R S
byte number > 1023
1838H _ A S/OS/S S/=S/AN S/ON S/RS
bit number > 7
1839H — L SY/T SY parameter>1023
183AH — L SW/T SW parameter > 1022

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

Error identifier Explanation
ACCU-1-LACCU-2-L (illegal parameter in...)
Table 5-19 continued:
183BH — L SD/T SD parameter >1020
183CH — G DB/GX DX parameter 0, 1 or 2 (DB

or DX 0, 1, 2 cannot be generated)

5.6.2
LZF (Runtime Errors) A runtime error occurs when the CPU detects an error during the
execution of a STEP 5 operation.The operation that causes the
runtime error is1ot executed.Exception: opening a non-existent
data block DB/DX). If there is an LZF organization block, this is
called. The interrupted user program is then continued from the next
operation after the operation that caused the error. If no LZF-OB is
loaded, the CPU goes to the STOP mode.

The following runtime errors are possible. In each case, the named
error OB is called:

LZF - calling a block that If a block is called or opened in the user program and this block does

is not loaded (OB 19) not exist, the system program automatically detects an error. This
applies to all block types and is true for conditional and unconditional
calls.

If the system program detects the call or opening of a block that is not
loaded, it calls organization blockB 19, if it is loaded. In OB 19,
you can specify how the CPU should proceed.

If you have programmed OB 19, it is called and processed following
which the interrupted STEP 5 program is continued at the next
operation unless OB 19 contains a stop operation. If, on the other
hand, you have not programmed OB 19, the CPU goes into the STOP
mode when a block that is not loaded is called or opened.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-43

Errors in RUN and in RESTART

Load/transfer error
(0B 32)

When OB 19 is called, ACCU 1 contains additional information that
defines the error in greater detail.

Table 5-20 LZF - calling a block that is not loaded

Error identifier Explanation

ACCU-1-L ACCU-2-L

1A01H — Data block not loaded for C DB

1A02H — Data block not loaded for CX DX

1A03H — Block not loaded for JU(C) FB, OB 1 t0
39, PB, SB

1A04H — Block not loaded for DOU(C) FX

1A05H — Data block not loaded for OB 254 or
255

1A06H — Data block not loaded for OB 182

1A07H — Data block not loaded for
OB150/0B151/0OB 153

Note

If you attempt to open a data block that is not loaded, the DBA
register (see Chapter 9) is affected. In this case a loaded data
block must be opened again before accessing DB/DX data.

When you transfer data to data blocks (DB, DX), the CPU compares
the length of the DB that has been opened with the operand in the
transfer operation. If the specified parameter exceeds the actual data
block length, the CPU does not execute the transfer statement to
prevent data in the memory from being overwritten by mistake.

The system program also detects a load/transfer error if a single bit of
a non-existent data word is to be set/reset or scanned.

The system program also detects a load/transfer error if you attempt to
access a data word before you call a data block (using C DBn or
CX DXn).

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

When the system program detects a load/transfer error, it calls
organization blocloB 32, if itis loaded. The operation that caused
the transfer error is not executed.

When OB 32 is called, ACCU 1 contains additional information that
defines the error in greater detail.

Table 5-21 LZF-load/transfer error (TRAF)

Error identifier Explanation

ACCU-1-L ACCU-2-L

1A11H — A/AN D, O/ON D, S/R D, =D access tq
a non-defined data word

1A12H — Transfer error: T DR to a non-defined
data word

1A13H — Transfer error: T DL to a non-defined
data word

1A14H — Transfer error: T DW to a non-defined
data word

1A15H — Transfer error: T DD to a non-defined
data word

1A16H — Load error: L DR to a non-defined data
word

1A17H — Load error: L DL to a non-defined data
word

1A18H — Load error: L DW to a non-defined data
word

1A19H — Load error: L DD to a non-defined data
word

Other runtime errors These include all runtime errors that cannot be grouped with the
(OB 31) previous types of runtime error (transfer errors or calling a block that

is not loaded).

If the system program detects one of these runtime errors, it calls
organization bloclOB 31. The operation (or special function) that
caused the error is not processed any further. If OB 31 is not loaded,
the CPU goes into the STOP mode.

If you want program execution to continue when one of the errors
listed below occurs, simply write the block end statement BE in

OB 31.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-45

Errors in RUN and in RESTART

When OB 31 is called, ACCU 1 and ACCU 2 contain additional
information that defines the error in greater detail.

Error identifiers of different
operations, OB 254/255 and

OB 250
Table 5-22 LZF-other runtime errors/part 1
Error identifier Explanation
ACCU-1-L ACCU-2-L
1A21H — G DB, GX DX: data block already
exists
1A22H — G DB, GX DX: illegal number of data
words (< 1 or > 4091)
1A23H — G DB, GX DX: not enough space in
the RAM
1A25H — DI: illegal parameter in ACCU 1
(<1lor>125)
1A29H — Bracket stack under or overflow
following A(, O(,)
1A2AH — C DB, CX DX, block length in data
block header too short
(length < 5 words)
1A2BH — Function block with incorrect PG
software loaded
1A2CH — ACR: illegal page number in
ACCU-1-L (> 255)
1A31H — OB 254 or OB 255 (shift) or
OB 250:
destination data block already
exists in DB-RAM
1A32H — OB 254 or OB 255 (duplicate):
destination data block already
exists in DB-RAM
1A33H — OB 254 or OB 255 or OB 250:
not enough space in the
DB-RAM

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

OB 182 error identifiers

Table 5-23 LZF-other runtime errors/part 2 (OB 182 identifier)

Error identifier Explanation

ACCU-1-L ACCU-2-L

1A34H 0001H description of the data field

1A34H 0100H address area type is illegal

1A34H 0101H data block number is illegal

1A34H 0102H "number of the first parameter word"
ilegal

1A34H 0200H "source data block type" illegal

1A34H 0201H "source data block number" illegal

1A34H 0202H number of first data word in the source
to be transmitted illegal

1A34H 0203H length of source data block in the block
header, value <5 words entered

1A34H 0210H "destination data block type" illegal

1A34H 0211H "destination data block" number illegal

1A34H 0212H number of the first data word in the
destination to be transmitted illegal

1A34H 0213H length of the destination data block in
the block header, value <5 words
entered

1A34H 0220H number of data words to be transmitted
illegal (= 0 or > 4091)

1A34H 0221H source data block too short

1A34H 0222H destination data block too short

1A34H 0223H destination data block in EPROM

CPU 928B Programming Guide
C79000-B8576-C898-01 5-47

Errors in RUN and in RESTART

Error identifiers of the The table below contains identifiers of OB 110, OB 121, OB 122,
different special function OBs OB 221, OB 240, OB 241, OB 242 and OB 250.

Table 5-24 LZF-other runtime errors/part 3

[¢]

Error identifier Explanation
ACCU-1-L ACCU-2-L
1A35H — OB 250: number of the transfer block
illegal

1A36H — OB 250: DB x and DB x + 1 or DX x
and DX x +1 have different
lengths

1A3AH — OB 221: illegal value for the new cyc
time (cycle time <1 ms
or > 13000 ms)

1A3BH — OB 223: diferent CPU start-up types|in
multiprocessor operation

1A41H — OB 240, OB 241 or OB 242:
illegal shift register or data
block number
(number < 192 or > 255)

1A42H — OB 241: shift register not initialized

1A43H — OB 240: not enough space in the
DB-RAM

1A44H — OB 240: dataword DW 0 of the data
block does not contain '0’

1A45H — OB 240: illegal shift register length in
DW 1 (not between 2 and 256)

1A46H — OB 240: illegal pointer position or
number of pointers > 5

1A47H — OB 120: illegal value in ACCU 1 or
ACCU-2-L

1A48H — OB 122: illegal value in ACCU 1

1A49H — OB 110: illegal value in ACCU 1 or
ACCU-2-L

1A4AH — OB 121: Iillegal value in ACCU 1lor
ACCU-2-L

1A4BH — OB 123: llegal value in ACCU 1

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

OB 150 error identifiers

Table 5-25 LZF-other runtime errors/part 4 (OB 150 identifiers)

Error identifier Explanation

ACCU-1-L ACCU-2-L

1A4CH 0001H illegal function number (=0 or >2)

1A4CH 0100H address area type illegal

1A4CH 0101H data block number illegal

1A4CH 0102H "number of the first data field word"
ilegal

1A4CH 0103H data block length entered in header
<5 words

1A4CH 0201H year specification in data field illegal

1A4CH 0202H month specification in data field illegal

1A4CH 0203H day of month specification in data field
ilegal

1A4CH 0204H weekday spec. in data field illegal

1A4CH 0205H hour specification in data field
ilegal

1A4CH 0206H minute specification in data field
ilegal

1A4CH 0207H second specification in data field
ilegal

1A4CH 0208H 1/100 seconds in data field not equal
to O

1A4CH 0209H data field word 3 / bits 0 to 3 not equal
to O

1A4CH 020AH hour format does not match setting in
OB 151

CPU 928B Programming Guide
C79000-B8576-C898-01 5-49

Errors in RUN and in RESTART

Error identifiers of OB 151,
OB 152 and OB 153

Table 5-26

LZF-other runtime errors/part 5 (identifiers of
OB 151, OB 152 and OB 153)

Error identifier
ACCU-1-L ACCU-2-L

Explanation

OB 151 identifiers
1A4DH 0001H function numbdtegal
(=00r>2)
1A4DH 0100H address area type illegal
1A4DH 0101H data block number illegal
1A4DH 0102H number of the first data field word
illegal
1A4DH 0103H data block length entered in header
< 5 words
1A4DH 0201H year specification in data field illegal
1A4DH 0202H month specification in data field illegal
1A4DH 0203H day of month spec. in data field illega
1A4DH 0204H weekday specification in data field
illegal
1A4DH 0205H hourspecification in data field illegal
1A4DH 0206H minute specification in data field
illegal
1A4DH 0207H second specification in data field
illegal
1A4DH 0208H 1/100 seconds in data field not equal
to0
1A4DH 0209H job type in data field illegal (> 7)
1A4DH 020AH
OB 152 identifiers
1A4EH 0001H function no. illegal (not 0to 3, or 8 or
15)
OB 153 identifiers
1A4FH 0001H function no. illegal
(=0 or<1)
1A4FH 0002H illegal delay time

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

Error identifiers of different
system operations

LZF-other runtime errors/part 6 (identifiers of

le 5-27 . .
Table 5 different system operations)

Error identifier Explanation
ACCU-1-L ACCU-2-L

1A50H — LRW, TRW:

the calculated memory address
<BR + constant> not in range
"0 - EDFFH"Y

1A51H — LRD, TRD:

the calculated memory address
<BR + constant> not in range
"0 - EDFEH"Y

1A52H — TSG, LY GB, LW GW, TY GB,
TW GW:

the calculated linear address
<BR + constant>not in range
"0 - EFFFH"

1A53H — LY GW,LWGD, TY GW, TW GD:
the calculated linear address

<BR + constant> not in range

"0 - EFFEH"

1A54H — LY GD, TY GD:

the calculated linear address
<BR + constant> not in range
"0 - EFFCH"

1A55H — TSC,LY CB,LW CW, TY CB,
TW CW:

the calculated page address
<BR + constant> not in range
"FA00H - BFFH"

1A56H — LY CW,LWCD, TY CW, TW CD:
the calculated page address

<BR + constant> not in range
"400H - FBFEH"

1A57H — LY CD, TY CD:

the calculated page address
<BR + constant> not in range
"F400H - FBFCH"

CPU 928B Programming Guide
C79000-B8576-C898-01 5-51

Errors in RUN and in RESTART

Error identifier
ACCU-1-L ACCU-2-L

Explanation

Table 5-27 continued:

[¢)

>

ge

1A58H — TNW, TNB:

the source field is not completely in on

of the following ranges:

0000 TFFF ger memoryl)

8000 .. DD7F data block RAM

DD80 .. E3FF DB O

E400 .. E7FF Sflags

EB00 .. EDFF system data (R,
RJ,RS,RT,C, T)

EEOO .. EFFF flags, process image

FO00 FFFF peripherals

1A59H — TNW, TNB:

the destination field is not completely i

one of the following ranges:

0000 TFFF ger memoryl)

8000 .. DD7F data block RAM

DD80 .. E3FF DB O

E400 .. E7FF Sflags

EB00 .. EDFF system data (R,
RJ,RS,RT,C, T)

EEOO .. EFFF flags, process ima

FO00 FFFF peripherals

D see Chap. 9

CPU 928B Programming Guide

C79000-B8576-C898-01

Errors in RUN and in RESTART

5.6.3

ADF (Addressing Error) An addressing error occurs when a STEP 5 operation references a
process image input or output to which no I/O module was assigned at
the time of the last COLD RESTART (e.g. the module is not plugged
in, it is defective or it is not defined in DB 1 of the CPU).

OB 25 The system program interrupts the execution of the user program and
calls organization blockB 25. After executing the program in
OB 25, the CPU continues with the next operation of the interrupted
program. The STEP 5 statement that caused ADF was executed but
with an undefined input or output value.
If OB 25 is not programmed, the CPU goes into the STOP mode when
the error occurs, unless you have specified in data block DX 0 that the
program should continue.

The address error monitoring can also be completely suppressed if
you program DX O appropriately.
Error identifiers The system program transfers the following as error identifiers:

ACCU-1-L = 1E40H

ACCU-2-L = ADF address

5.6.4

QVZ (Timeout Error) A timeout error occurs when an input or output module is addressed
and does not respond with the ready signal (RDY) within a specific
time. The cause of the timeout may be a defect on the I/0O module or
the module may have been unplugged from the PC during operation.

The following timeout errors interrupt the user program, and call the
appropriate organization blocks:

QVZ during direct access Timeout in the user program during direct access via the S5 bus to
via the S5 bus CP, IP, coordinator or to a peripheral module (e.g. with load and
transfer operations L/T P... or O...):

OB 23 The system program calls organization bladak 23, if it is loaded.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-53

Errors in RUN and in RESTART

Error identifiers

QVZ address

QVZ during PIl update
and transfer of the
IPC flags

OB 24

ACCUs 1 and 2 contain additional information that defines the error
in greater detail.

ACCUL-L = 1E23H

ACCU2-L = QVZ address

The QVZ address indicates ttiest peripheral byte to generate a
QVZ. Normally, this is the byte with the lowest address in peripheral
operations.

An exception to this are QVZ addresses supplied with the commands
TNB/TNW in the event of a timeout. Since these operations are
decremented, in this case the QVZ address indicates the byte with the
highest address that triggered the QVZ during the transfer of data.

Timeout error during the update of the process image for
inputs/outputs and transfer of IPC flags:

The system program calls organization bl@ak 24. ACCUs 1 and 2
contain additional information that defines the error in greater detail:

Table 5-28 QVZ flags when calling OB 24

Error identifier Explanation
ACCU-1-L ACCU-2-L

1E25H yyyyH Timeout outputting the process image

of the digital outputs

yyyy = address of the non-acknow-
ledged output byte

1E26H yyyyH Timeout updating the process image of

the digital inputs

yyyy = address of the non-acknow-
ledged input byte

1E27H yyyyH | Timeout updating the IPC flag outputs

yyyy = address of the non-acknow-
ledged IPC flag byte

1E28H yyyyH | Timeout updating the IPC flag inputs
yyyy = address of the non-acknow-
ledged IPC flag byte

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

Note
If the organization blocks called atet programmed, the user
program iscontinued.

If a timeout occurs, the CPU reads in the substitute value "00H
and continues to work with this value if the QVZ is
acknowledged.

A timeout, however, increases the runtime of the STEP 5
operation that caused it.

STOP in the case of QVZ If you want a timeout to cause the CPU to stop, you must program the
stop operation STP in OB 23 or 24.

You can also program DX 0 to cause a system stop in the event of a
timeout without programming OB 23/24.)

CPU 928B Programming Guide
C79000-B8576-C898-01 5-55

Errors in RUN and in RESTART

5.6.5
ZYK (Cycle Time Exceeded
Error)

OB 26

Cycle monitoring time

STOP in the case of
unloaded OB 26

No error identifiers

The cycle time includes the entire duration of cyclic program
execution. The cycle monitoring time can be exceeded owing to a
number of reasons: e.g. incorrect programming, a program loop in a
function block, failure of the clock pulse generator or by system
activities such as process image updating in conjunction with long
programs.

When the cycle time exceeded error occurs, the system program
interrupts the user program and calls organization lR6, if it is
loaded. This retriggers the cycle time monitoring. If the monitoring
time elapses again, before OB 26 has been completely processed, the
CPU goes into the STOP mode owing to a double call error
(DOPP-FE).

The cycle monitoring time is variable (1 to 13000 ms) and can be
retriggered (see above). Regardless of the cycle time, 100 ms after the
cycle time has elapsed, BASP is activated if OB 26 has not yet been
completed.

You can select the cycle monitoring time by means of an entry in DX
0 or by calling the special function organization block OB 221.

In the cyclic program, the cycle time monitoring can be retriggered by

calling the special function OB 222.

If you do not program OB 26, the CPU changes to the STOP mode. If
you do not want this to happen, you must change the default in DX 0.

If a cycle time exceeded error occurs,error identifiers are
transferred to ACCU 1 or ACCU 2.

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

5.6.6
WECK-FE (Collision of Time If a particular time interrupt OB is requested before its last request has
Interrupts) been completely processed, the system program recognizes a collision

of time interrupts and calls organization blazk 33, if it is loaded,
or the CPU goes to the STOP mode. See Section 4.5.2.

ACCUs 1 and 2 contain additional information that defines the error
in greater detail.

Table 5-29 WECK-FE identifiers

Error identifier Explanation
ACCU-1-L ACCU-2-L
1001H 0016H Collision of time interrupts in OB 10
(10 ms)
0014H Collision of time interrupts in OB 11
(20 ms)
0012H Collision of time interrupts in OB 12
(50 ms)
0010H Collision of time interrupts in OB 13
(100 ms)
00OEH Collision of time interrupts in OB 14
(200 ms)
000CH Collision of time interrupts in OB 15
(500 ms)
000AH Collision of time interrupts in OB 16
(1 sec)
0008H Collision of time interrupts in OB 17
(2 sec)
0006H Collision of time interrupts in OB 18
(5 sec)
Note
The identifier in ACCU 2 is the level identifier of the time
interrupt that caused the error.
If you do not program OB 33, the CPU goes into the stop mode.
You can, however, prograbX 0 so that the program is
continued when a collision of time interrupts occurs although you
have not programmed OB 33.
A second call for the already active error program processing
level "collision of time interrupts" does not lead to a double call
error (DOPP).

CPU 928B Programming Guide
C79000-B8576-C898-01 5-57

Errors in RUN and in RESTART

5.6.7
REG-FE (Controller Error) An error occurring during the processing of the standard function
block for controller structure R64 is detected as a controller error.

Note

While, for example, a collision of time interrupts is always
recognized by the system program, when a particular time
interrupt OB is not started and completed within a particular time
interval (e.g. OB 13 within 100 ms), incorrect processing of the
closed loop control program is only detected when the program
processing level CL CONTROL lled. The error is then
indicated in the ISTACK.

OB 34 If a controller error occurs, the program processing level CL
CONTROL is exited and the CONTROLLER ERROR (LEVEL :
001CH) level is called with organization blooiB 34.
The subsequent reaction of the CPU depends on how you have
programmed OB 34:

» If you have not programmed OB 34, the CPU goes into the STOP
mode. You can see the cause of the error by displaying the
ISTACK.

» If you have programmed OB 34, the STEP 5 program it contains
(e.g. evaluation of ACCU 1 and 2 and then appropriate error
handling) is executed. Following this, the controller processing is
continued from the point at which it was interrupted.

Response to controller errors If you want to ignore all controller errors, simply write the block end
statement BE in OB 34.

If you want the controller processing to continue when a controller
error occurs and you do not program OB 34, change the default in
DX 0.

CPU 928B Programming Guide
5-58 C79000-B8576-C898-01

Errors in RUN and in RESTART

When OB 34 is called, ACCUs 1 and 2 contain additional information
that defines the error in greater detail.

Table 5-30 REG-FE identifiers

Error identifier Explanation
ACCU-1-LACCU-2-L

0801H DByyH | Sampling time error
yy = number of controller data block
involved

0802H DByyH | Controller data block not loaded
yy = number of the data block that
is not loaded

0803H FByyH | Controller function block not loaded
yy = the number of the function block
that is not loaded

0804H FByyH | Controller function block not recognized
yy = number of the non-recognized
function block

0805H FByyH | Controller function block loaded with
incorrect PC software
yy = function block number

0806H DByyH | Wrong controller data block length
yy = data block number

0880H 00yyH | Timeout (QVZ) during the controller

processing
yy = number of the I/O byte that caused
the timeout.
Entry in the control bit In all seven situations, the error identififEG-FE is marked in the
screen form control bits on the programmer screen. If you operate a PG without

the S5-DOS operating system, the last position in the lower line of the
control bits screen is not labelled, but is also marked. In the ISTACK
screen, the level CL CONTROREG is marked as the cause of the
interruption.

CPU 928B Programming Guide
C79000-B8576-C898-01 5-59

Errors in RUN and in RESTART

Sampling time errors

5.6.8
ABBR (Abort)

No error identifiers

After the selected sampling time has elapsed, the cyclic program is
stopped at the netock boundary and the controller processing is
inserted. It is possible that the processing of longer blocks takes too
long and that the controller processing becomes "out of step”: this
causes a sampling time error.

You can handle a sampling time error just as the other controller
errors (as described on the previous pagg)u can suppress the
error by means of a mask. In this case, program execution is not
interrupted when a sampling time error occurs.

Refer also to the description "compact closed loop control in the R
processor of the S5 135U" in the R64 Controller Structure.

You can sometimes prevent a sampling time error by changing the
defaultin DX 0 "processing of controller and process interrupts at

block boundaries" to "processing of controller and process interrupts
at operation boundaries".

If, during the RUN mode, the stop mode is requested by one of the
following:

» switching the mode selector on the CPU from RUN to STOP,
e PG online function, PLC STOP,

» reset switch on coordinator set to STOP (in multiprocessor
operation),

the system program calisB 28, it is loaded. After OB 28 has been
processed, the CPU goes into the STOP mode.

Note
The transition to the stop mode takes place regardless of whether
you program OB 28 or not.

No error identifiers are transferred to ACCU 1 or ACCU 2.

CPU 928B Programming Guide
C79000-B8576-C898-01

Errors in RUN and in RESTART

5.6.9
Communication Errors
(FE-3)

Response in the case of
unloaded OB 35

Error information in ACCU 1

Structure of the error
information in ACCU 1 and
ACCU 2

If problems occur on the second serial interface with the computer
link RK 517, data transfer with procedure 3964/3964R, data transfer
with "open driver" or data transfer with SINEC L1, the system
program calls organization blo€kB 35and transfers additional
information about the problems to ACCU 1.

If you do not program OB 35, the system program doeseact and

the CPU doesot go into the stop mode. This is the default reaction.

If you want the CPU to go into the stop mode when an interface error
occurs and you do not program OB 35, you must change the default in

DX 0.

Every 100 ms the system program checks whether communication
errors have occurred on the second serial interface. If an error is
detected, the system program transfers the error information to ACCU
1 and ACCU 2. Ifyou program OB 35, the system program calls it
and transfers the error information in ACCU 1 and ACCU 2.

Error numbers for a maximum of three causes of problems can be
transferred when OB 35 is called. If there are more than three causes
of problems at the same time, this is indicated by a special overflow
identifier.

31 24 23 18 15 87 0
ACCU1| O 0 0 0 F| U| B| 0| Errornumber Error number | Error number
1 2 3
F ='0’, when there is no error entered in the error area

CPU 928B Programming Guide
C79000-B8576-C898-01

'1’, when there is an error entered in the error area.

U ='0", when there is no error overflow (maximum three entries)
='1', when there is an error overflow (more than three entries)
B =0, when there is no BREAK on the interface

'1’, when there is a BREAK on the interface

Errors in RUN and in RESTART

BREAK If there is a BREAK on an interface, OB 35 is only called at the
beginning and end of the BREAK status.

Error numbers 1 to 3 Here, a maximum of three error numbers belonging to problems
detected on the interface are entered in the order in which they are
detected by the system.

Meaning of the error numbers For the meaning of the error numbers and further information on
handling interface errors, refer to the "CPU 928B Communication"
Manual (/14/ in Chapter 13).

CPU 928B Programming Guide
5-62 C79000-B8576-C898-01

Integrated Special Functions 6

Contents of Chapter 6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

INEFOAUCTION. . . . oot e e e e e e e e e

OB 110: Accessing the Condition Code Byte

OB 111: Clear ACCUS 1, 2, 3and 4.ot e e e 6-13
OB 112/113: Roll Up ACCU and Roll Down ACCUcoiiiien.. 6-14
OB 120: Enabling/Disabling of Interrupts 6-16
OB 121: Enable/Disable Individual Time-Driven Interrupts 6-19
OB 122: Enable/Disable "Delay of All Interrupts"o .. 6-22
OB 123: Enable/Disable "Delay bfdividual Time-Driven Ingerrupts”. 6-25
Setting/Reading the System Time (OB 150).t 6-28
OB 151: Setting/Reading the Time for Clock-Driven Interrupts 6-33
OB 152: CyCle StatiStiCsttt e 6-40
OB 153: Set/Read Time for Delayed Interrupt. it 6-48
OB 160 t0 163: LOOP COUNTEIS . . o\t it e e e e e e e e et 6-51
OB 170: Read Block Stack (BSTACK) 6-53
OB 180: Accessingaviable Data Blocks i 6-58
OB 181: Testing Data Blocks (DB/DX)ttt 6-62

CPU 928B Programming Guide
C79000-B8576-C898-01 6-1

Contents

6.17

6.18

6.19

6.20

6.21

6.21.1
6.21.2
6.21.3
6.21.4

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.31.1
6.31.2
6.31.3
6.31.4

OB 182: Copying a Data Areaot e 6-65
OB 190/0B 192: Transferring FlagstoaData Block 6-68
OB 191/0B 193: Transferring Data Fieldstoa Flag Area 6-71
OB 200 to OB 205: Multiprocessor Communication.o vvvu... 6-77
OB 216 t0 OB 218: Page@ ACCESS. . . . ottt ittt e e e 6-78
What are PageS? . . ottt 6-78
HOW 0 @CCESS PGS . . - v vt it e it e e e e e e e e 6-79
Address areas for peripheralsonthe S5bus 6-80
Notes 0n assigning ParametersS.ot e 6-81
OB 216: Writing t0 @ Page e 6-82
OB 217: Reading from a Paget e 6-84
OB 218: ReSernving a Paget 6-86
Program ExXample 6-88
OB 220: Sign EXIENSION . .. oot e e 6-90
OB 221: Setting the Cycle Monitoring Timet 6-91
OB 222: Restarting the Cycle Monitoring Time 6-92
OB 223: Comparing Restart TYPeSot e e e 6-93
OB 224: Transferring Blocks of Interprocessor Communication Flags 6-94
OB 226: Reading a Word from the System Program 6-95
OB 227: Reading the Checksum of the System Program 6-96
OB 228: Reading Status Information of a Program Processing Level 6-98
OB 230 to 237: Functions for Standard Function Blocks 6-100
OB 240 to 242: Special Functions for Shift Registers 6-101 .
Shift RegISterS. . .. o 6-101
OB 240: Initializing Shift Registerst e 6-105
OB 241Processing Shift Registers 6-108.
OB 242: Deleting a Shift Register e 6-109

CPU 928B Programming Guide
C79000-B8576-C898-01

Contents

6.32 OB 250/251: Closed-loop Control/ PID Algorithm -110 6
6.32.1 FunctionaDescription of the PIBController. 6-110
6.32.2 PID Algorithm 112. 6
6.32.3 OB 250: Initializing the PID Algorithm :118 6
6.32.4 OB 251Processing the PID Algorithm 6-119
Format of controller inputs and OUtPULS.ot 6-120
General NOtES. 6-121. .
Controller parameters 6-122
Parameter Changes.ot 6-123
Abbreviations for PID controllers 6-123
Normalized fixed point numbers 6-124
6.33 OB 254, OB 255: Transferring a Data Block to the DB RAM 6-125

CPU 928B Programming Guide
C79000-B8576-C898-01 6-3

Integrated Special Functions 6

CPU 928B Programming Guide
C79000-B8576-C898-01

This Chapter tells you which integral special functions the system
program contains, where you can use these functions and how you
must call and assign parameters to the special function OBs.

In addition, you will learn how to detect errors in processing a special
function and how do deal with these in the program.

Introduction

6.1 Introduction

The CPU 928B operating system provides you with a number of
special functions, that you can call with a conditional (JC OBx) or
unconditional (JU OBx) block call. Organization blocks OB 40 to
OB 255 are reserved for these special functions.

These functions are known iasegrated special functions, since they
are a fixed part of the system program. You can call these special
functions, you cannot, however, read or modify them.

The table below gives you an overview of the special functions

available.

Table 6-1 Overview of the special functions available with the CPU 928B
Block Function see section /
page
OB 110 Access to the condition code byte 6.2/6-11
OB 111 Clear ACCU 1, 2,3 and 4 6.3/6-13
OB 112 Roll up ACCU 6.6/ 6 - 14
OB 113 Roll down ACCU "
OB 120 "Disable all interrupts" on/off 6.5/6 - 16
OB 121 "Disable single time interrupts" on/off 6.6/ 6 - 19
OB 122 "Delay all interrupts" on/off 6.7/ 6 - 22
OB 123 "Delay single time interrupts" on/off 6.8/6-25
OB 150 Set/read the system time 6.9/ 6 - 28
OB 151 Set/read time for clock-driven time interrupt 6.10/ 6 - 33
OB 152 Read out cycle time 6.11/ 6 - 40
OB 153 Set/read time for delay interrupt 6.12/ 6 - 48
(from Version -3UB12)
OB 160 to 163 Loop counter 6.13/6-51
OB 170 Read block stack (BSTACK) 6.14/ 6 - 53
OB 180 Variable data block access 6.15/ 6 - 58
OB 181 Test data block (DB/DX) 6.16 /6 - 62
OB 182 Copy data area 6.17/ 6 - 65
OB 190, 192 Transfer flags to data blocks 6.18/ 6 - 68
OB 191, 193 Transfer data fields to flag area 6.19/6-71
oB 200" 202" Functions for multiprocessor communication 6.20/ 6 - 77
OB 203, 204, 205
OB 216 to 218 Accessing pages 6.21/6 - 78

CPU 928B Programming Guide

C79000-B8576-C898-01

Introduction

Block

Function

see section /
page

Table 6-1 continued:

OB 220 Sign extension 6.22/6 - 90
0B 2212 Set the cycle monitoring time 6.23/6 - 91

OB 222 Restart the cycle monitoring time 6.24/6 - 92

OB 223 Compare restart types in multiprocessor operation | 6.25/6 - 93

OB 2242 Transfer a block of IPC flags in multiprocessor operati®26/6 - 94

OB 226 Read a word from the system program 6.27/6 - 95

OB 227 Read the checksum of the system program 6.28/6 - 96

OB 228 Read status information of a program processing level6.29/6 - 98

OB 230 to 237 Functions for standard function blocks 6.30/6 - 100
OB 240 Initialize shift register 6.31.2/6 - 105
OB 241 Process shift register 6.31.3/6 - 108
OB 242 Clear shift register 6.31.4/6 - 109
oB 250! Initialize PID controller 6.32.3/6 - 118
0B 251 Process PID controller 6.32.4/6 - 119
OB 254, 258) Copy/duplicate a DB or DX data block 6.33/6 - 125

D Special functions with pseudo operation boundaries (executed in several steps)

2 Instead of these special function organization blocks, assign parameters in data block DX 0 (see Chapter 7).

CPU 928B Programming Guide

C79000-B8576-C898-01

Introduction

Interfaces

Block call

Parameters

ACCU abbreviations

The following operations and parameters are available as interfaces
when programming the use of special functions:

« Conditional/lunconditional block call JC .../ JU ...

» Parameters for selecting presets using ACCU 1 and possibly
ACCU 2 and/or memory registers.

In this description, the terparametersrefers to all data that the
CPU needs toarry out thespecial functions correctly. Before you
call these special functions in your STEP 5 program, you must
load this data into the accumulators or into the memory registers
as indicated.

The abbreviations used in reference to the parameter assignment of
special function OBs are as follows:

ACCU 1: ACCU 1, 32 bits
ACCU-1-L: ACCU 1, low word, 16 bits
ACCU-1-LL: ACCU 1, low word, low byte, 8 bits
ACCU-1-LH: ACCU 1, low word, high byte, 8 bits
High word Low word
High byte Low byte High byte Low byte
31 24 23 16 15 8 7 0

CPU 928B Programming Guide
C79000-B8576-C898-01

Introduction

Errors during special If an error occurs during the processing of the special functions, the
function processing system program reacts in a specific manner.

In terms of the system program reaction to errors, the special
functions can be divided into two groups.

Error OB, ACCU identifiers Group 1 includes all the special functions for which an error
organization block (error OB) is called in the event of an error. You
can program the CPUs reaction in these error OBs. These error OBs
are OB 19, OB 30 and OB 31. In ACCU 1 and for some special
functions also in ACCU 2 (see Section 5.6.1 and 5.6.2), identifiers are
transferred to the error OB that define the error in greater detail.

If the CPU encounters for example an incorrect parameter when
processing one of these special functions, it detects a runtime error
and calls OB 31. On the other hand, if for example the called special
function does not exist, the CPU detects an operation code error and
attempts to call OB 30. With some of these special functions, if there
is a reference to a data block in the call parameters and the data block m
is not loaded, then the CPU attempts to call OB 19.

If the error OBs 30 or 31 are not loaded or contain an STP operation,
the CPU goes into the stop mode. LZF or BCF is marked in the
control bits in the ISTACK. The accumulators of the error processing
levels contain error identifiers that describe the error in greater detail.
If OB 19, OB 30 or OB 31 is loaded (and does not contain an STP
operation), the user program is continued at the next operation after
the OB has been processed. In this case, the accumulators remain
unchanged.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-9

Introduction

RLO, CCO/CC 1 In connection with some of the special functions, errors specific to the
special function affect the condition codes CC 0/CC 1.
If an error occurs during the processing of these special functions, the
RLO is normally set (RLO = 1). When using these special functions,
you can use a JC operation (conditional jump) inyour STEP 5
program to evaluate the RLO and to react to an error.

The processing of some special functions also affects the condition
codes CC 0 and CC 1. In your STEP 5 program, you can scan these
condition codes with comparison operations and once again react to
an error.

The following descriptions of the individual special function OBs
indicate which of these reactions apply to the particular special
function OB.

Note

Calling a special function OB with the operation JC OB > 39 or
JU OB > 39 is not a "genuine" block change, but is handled like a
STEP 5 operation without a block operaNd.interrupts are

inserted (when "interrupts at block boundaries" is set).

Special functions with Some of the special functions are carried out in several steps and
pseudo operation contain what are known as pseudo operation boundaries.
boundaries This means that the special function is executed in several steps. If an

error (e.g. ZYK) or an interrupt (e.g. time or process interrupt at
operation boundaries) occurs during the execution of a step, the
appropriate organization block is inserted at the end of this step at the
pseudo operation boundary.

The special functions containing pseudo operation boundaries are
marked in the overview of the integrated special functions.

CPU 928B Programming Guide
6-10 C79000-B8576-C898-01

OB 110: Accessing the Condition Code Byte

6.2 OB 110: Accessing the Condition Code Byte

Function Using the special function organization block OB 110, you can write
the contents of ACCU 1 to the condition code register, or mask it with
Illll Or IIOII.

Assignment of ACCU 1 for
access to the condition code

register
31 7 6 5 4 3 2 1 0
*) Cl1|CO| OvV| OS| OR| STA RLOERAB
Word displays Bit displays

*) Bits 8 to 31 are reserved for extensions and must be "0" when the condition code register is written to. They must also be igno
when reading out the condition code register.

Parameters 1. ACCU-2-L:

Function number
possible values: 1,20r3

2.ACCU1

New condition code byte or mask

Function Contents of ACCU-1-L
no. in Function
ACCU-2-L before after
1 New New The contents of ACCU 1 are loaded in the condition

condition | condition | code register.
code byte | code byte

2 Mask New All the bits indicated as "1" in the mask in ACCU 1 are set
condition | to"1" inthe condition code register. The new
cod% byte | condition code byte is loaded in ACCU 1.

3 Mask New All the bits indicated as "1" in the mask in ACCU 1 are set
condition | to"0" in the condition code register. The new
codtla) byte | condition code byte is loaded in ACCU 1.

D Restriction: OB 110 itself affects the condition code bits. It sets: OR = 0, STA =BRakE = 0, regardless of the
value specified for thesetbin ACCU 1 before the OB was called.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-11

OB 110: Accessing the Condition Code Byte

Result

Possible errors

Example

Call distributor

After execution of OB 110, the condition code byte will have been
changed in accordance with the function and the contents of ACCU-1.

e Function number in ACCU-2-L not equal to 1, 2 or 3.
» One of the bits no. 8 to no. 31 is setin ACCU 1.

If an error occursDB 31 (other runtime errors) is called. If OB 31 is
not loaded, the CPU goes to the STOP mode. In both cases, the error
identifier LA49H is entered in ACCU-1-L.

With OB 110, you can test the operations that evaluate or affect the
condition code register. Its application is, however, not restricted to
the operation test. The following example shows you a further
possible application.

One of four subroutines is to be called depending on the contents of
flag byte FY 0. The four subroutines are assigned to bits F 0.0 to
F 0.3. Only one of these bits can be set at any one time.

MO000

M001

M002

M003

L FYO
SLW 4

L KB1
TAK

JU OB110
S =M000
:JO =M001
M =M002
P =M003
'BEU

'BEU

‘BEU

‘BEU

;shift F 0.0 to F 0.3 four bits to the left
:load the function number

JumpifOS =1
jumpifOv =1
JjumpifCC0=1
JumpifCC1=1

;if no bit is set

ifF0.0=1

ifF0.1=1

ifF0.2=1

ifF03=1

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 111: Clear ACCUs 1, 2, 3and 4

6.3 OB 111:Clear ACCUs 1,2,3and 4

Function Calling special function organization block OB 111 is a simple way of
clearing ACCUs 1 to 4. OB 111 overwrites all four registers with "0".

Parameters none
Result Accus 1 to 4 (32 bits each) are deleted.
Possible errors none

CPU 928B Programming Guide
C79000-B8576-C898-01 6-13

OB 112/113: Roll Up ACCU and Roll Down ACCU

6.4 OB 112/113: Roll Up ACCU and R oll Down ACCU

Function OBs 112 and 113 roll the contents of the ACCUs either up or down.

e OB 112 (roll up) shifts the contents of ACCU 1 to ACCU 2, the
contents of ACCU 2 to ACCU 3 etc.

e OB 113 (roll down) shifts the contents of the ACCUs in the
opposite direction; the contents of ACCU 1 to ACCU 4, ACCU 4
to ACCU 3 etc.

Parameters none

Result Figures 6-1 and 6-2 show the contents of the ACldfsre andafter
calling OB 112 and OB 113.

Note

You can also shift the contents of the ACCUs using the STEP
operations ENT (supplementary operation set) and TAK (syste
operation) (see Section 3.4.3.).

Possible errors none

CPU 928B Programming Guide
6-14 C79000-B8576-C898-01

OB 112/113: Roll Up ACCU and Roll Down ACCU

roll ACCU contents

r - — — T/
31 | o | 31 0
ACCU 4 | <ACCU 4> <ACCU 3>
Iy
| |
ACCU 3 | <ACCU 3> <ACCU 2>
| OB 112
ACCU 2 | <ACCU 2> \ <ACCU 1>
[\
\ \
ACCU 1 | <ACCU 1> \ <ACCU 4>
|
before after
Fig. 6-1 Effects of the "roll up" function
roll ACCU contents
31 Tr 0 | 31 0
ACCU 4 | <ACCU 4> | <ACCU 1>
‘ \
i |
ACCU 3 | <ACCU 3> \ <ACCU 4>
| OB 113
\
ACCU 2 | <ACCU 2> | <ACCU 3>
| |
‘ |
ACCU 1 | <ACCU 1> | <ACCU 2>
b
before after

Fig. 6-2 Effects of the "roll down" function

CPU 928B Programming Guide
C79000-B8576-C898-01 6-15

OB 120: Enabling/Disabling of Interrupts

6.5 OB 120: Enabling/Disabling of Interrupts

Function

Parameters

A STEP 5 program can be interrupted at block or operation
boundaries by programs with a higher priority. These higher priority
program processing levels include the process and all time interrupts
(cyclic time interrupts, clock-driven time interrupt and delay
interrupt). The runtime of the interrupted program ese¢fore

extended by the runtime of the programs inserted by the interrupts.

Using special function organization blocks OB 120, you can prevent
the insertion of higher priority program processing levels at one or
more consecutive block or operation boundaries (depending on the
setting in DX 0).

The special function organization OB 120 affects the reaction to
interrupts:

Disabling interrupts means that no more interrupts are recognized and
the interrupts that have already been detected (e.g. they are waiting for
a block boundary) are cleared. If OB 2 (process interrupts) or an OB
for time-driven interrupt processing have already started, they are
processed to the end.

Enabling interrupts means that all interrupts are once again

recognized immediately, and are inserted and processed at the next
block or operation boundary.

1. Double control word

OB 120 records the interrupts to be disabled or delayed in a
system-internadouble control word.

Bitno. 31 3210

Double control word

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 120: Enabling/Disabling of Interrupts

The bits of the double control word are assigned as follows:

Control Function
word bit no.
0="7 all time-driven interrupts in fixed interval delayed
1="1 the clock-driven time interrupt is disabled
2="0 all process interrupts are disabled
3="7 the delay interrupt is disabled
410 31 reserved; these bits must be "0"!
2. Accus
2a)ACCU-2-L
Function No.

Permissible values 1,2 or 3 with:

1: The contents of ACCU 1 are loaded
in the control word.

2: All the bits in the mask in ACCU 1
marked with a'1’ are setta’ in the
control word. The new control word is
loaded in ACCU 1.

3: All the bits in the mask in ACCU 1
marked with '1’ are set t®’ in the

control word. The new control word is
loaded in ACCU 1.

2b) ACCU1

New control word or mask, depending on the desired function

CPU 928B Programming Guide
C79000-B8576-C898-01 6-17

OB 120: Enabling/Disabling of Interrupts

Result

Possible errors

Notes

Calling OB 120 has the following results:

Function no. Contents of ACCU 1
in
ACCU-2-L before after
1 Control word Control word
2 Mask New
control word
3 Mask New
control word

« lllegal function number in ACCU-2-L

e One of the reserved bits in ACCU 1 (no. 3to 31) is set to "1".

In the event of an erro@B 31 (other runtime errors) is called. If
OB 31 is not loaded, the CPU goes to the STOP mode.
In both cases, an error ID is entered in ACCU-1-L.

» You can scan the status of a control word with the following
program sequence:

1. Load the function number 2 or 3 in ACCU-2-L

2. Load the value '0’ in ACCU 1

3. Call special function OB 120

4. Read out ACCU 1

» You can determine the status of interrupt processing by reading
out system data word RS 131.

- RS 131 Condition codeword "disable all interrupts"

* |nstead of OB 120,

you can use the operations IA and RA to

disable and enable process
interrupts as follows:

IA corresponds to

RA corresponds to

L KB 2
L KM 00000000 00000100
JU OB 120

L KB 3
L KM 00000000 00000100
JUu OB 120

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 121: Enable/Disable Individual Time-Driven Interrupts

6.6 OB 121: Enable/Disable Individual Time-Driven Interrupts

Using the special function organization block OB 121, you can
prevent the insertion of certain time-driven OBs (time-driven
interrupts witha fixed time interval) at one or more consecutive

block or operation boundaries. You can, for example, prevent a
particular program section being interrupted by an OB 18 (5 s) and an
OB 17 (2 s). On the other hand, all other programmed time-driven
interrupts are processed as usual.

Function The special function organization OB 121 affects the reaction to
time-driven interrupts:

Disabling individual time-driven interrupts means that no more of the
specified time-driven interrupts are recognized and the interrupts that
have already been detected (e.g. they are waiting for a block
boundary) are cleared. If OB 2 (process interrupts) or an OB for
time-driven interrupt processing (for processing a time-driven
interrupt at a fixed time interval) have already started, they are
processed to the end.

Enabling individual time-driven interrupts means that all interrupts
are once again recognized immediately, and are inserted and
processed at the next block or operation boundary.

Parameters 1. Control word

OBs 121 records the time-driven interrupts to be disabled or delayed
in acontrol word:

Bit no.: 15 3210

Control word

CPU 928B Programming Guide
C79000-B8576-C898-01 6-19

OB 121: Enable/Disable Individual Time-Driven Interrupts

The bits of the control word are assigned as follows:

Interrupt

Reserved; these bits must be "0"!

Time-driven interrupt with fixed time

intervals:
10 ms
20 ms
50 ms
100 ms
200 ms
500 ms
1sec
2 sec
5sec

(OB 10)
(OB 11)
(OB 12)
(OB 13)
(OB 14)
(OB 15)
(OB 16)
(OB 17)
(OB 18)

Reserved; these bits must be "0"!

Bit no.
Oto 2
3 = 11!
4 = il‘
5 = 11!
6 = 11!
7 = 11!
8 = 11!
9 = 11!
10="1
11="71
12 to 15
2. Accus
2a)ACCU-2-L
Function No.

Permissible values:

2b)ACCU 1

1, 2 or 3 with:

The contents of ACCU 1 are loaded
in the control word.

All the bits in the mask in ACCU 1
marked with a '1’ are settd’ in

the control word. The new control word
is loaded in ACCU 1.

All the bits in the mask in ACCU 1

marked with '1’ are set t®’ in the
control word. The new control word
is loaded in ACCU 1.

New control word or mask, depending on the desired function

CPU 928B Programming Guide

C79000-B8576-C898-01

OB 121: Enable/Disable Individual Time-Driven Interrupts

Possible errors:

Notes

CPU 928B Programming Guide
C79000-B8576-C898-01

« lllegal function number in ACCU-2-L
» One of the reserved bits in ACCU 1 is set to "1".
In the event of an erro@B 31 (other runtime errors) is called. If

OB 31 is not loaded, the CPU goes to the STOP mode.
In both cases, an error ID is entered in ACCU-1-L.

» You can scan the status of a control word with the following
program sequence:

1. Load the function number 2 or 3 in ACCU-2-L
2. Load the value "0" in ACCU 1
3. Call special function OB 121

4. Read out ACCU 1

You can determine the status of the time-driven interrupt processing
by reading out system data word RS 135.

- RS 135 Condition codeword "disable individuaknntipts"

OB 122: Enable/Disable "Delay of All Interrupts”

6.7 OB 122: Enable/Disable "Delay of All Interrupts"

Function

Parameters

A STEP 5 program can be interrupted at block or operations
boundaries by a hign-priority program. Such higher-priority

program processing levels include the process interrupts and all time
interrupts (cyclic time interrupts, clock-driven time interrupt and
delay interrupt). The runtime of the interrupted program is therefore
extended by the runtime of the programs inserted by the interrupts.

Using special function block OB 122, you can prevent the insertion of
higher priority program processing levels at one or more consecutive
block or operation boundaries (depending on the setting in DX 0).

OB 122 affects the reaction to interrupts as follows:

Enabling interrupt delay means all interrupts will continue to be
registered and already pending interrupts will remain registered.
However, registered interrupts will not yet be processed. All operation
or block boundaries will be temporarily disabled for the processing
interrupts. If OB 2 (process interrupts) or an OB for time-driven
interrupt processing have already started, they are processed to the
end.

Disabling interrupt delay means all registered interrupts will be
inserted and processed at the next block or operation boundary.

Note

If a specific time-driven interrupt OB is called for the second time
during the "Delay interrupt" phase, a collision of time interrupts
occurs.

1. Double control word

OB 122 records the interrupts to be delayed in a system-internal
double control word.

Bit no.: 31 3210

Double control word

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 122: Enable/Disable "Delay of All Interrupts”

The bits of the double control word are assigned as follows:

Control Function
word bit no.
0o="7 all time-driven interrupts in fixed interval are
delayed
1="17 the clock-driven time interrupt is delayed
2="7 all process interrupts are delayed
3="7 the delay interrupt is delayed
410 31 reserved; these bits must be "0"!
2. Accus
2a)ACCU-2-L
Function No.

Permissible values: 1, 2 or 3 with:

1: The contents of ACCU 1 are loaded in
the control word.

2: All the bits in the mask in ACCU 1
marked with'1" are set to "1". The new
control word is loaded in ACCU 1.

3: All the bits in the mask in ACCU 1
marked with'0" are set to "1" in the

control word. The new control word is
loaded in ACCU 1.

2b) ACCU 1

New control word or mask depending on the desired function.

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -23

OB 122: Enable/Disable "Delay of All Interrupts”

Result Calling OB 122 has the following results:
Function no. Contents of ACCU 1
in
ACCU-2-L before after
1 Control word Control word
2 Mask New
control word
3 Mask New
control word
Possible errors « lllegal function number in ACCU-2-L

» One of the reserved bits in ACCU 1 (no. 4 to 31) is set to "1".
In the event of erro®B 31 (other runtime errors) is called. If OB 31

is not loaded, the CPU goes to the STOP mode.
In both cases, the error IA48H is entered in ACCU-1-L.

Notes » You can scan the status of the control work with the following
program sequence:

1. Load the function number 2 or 3 in ACCU-2-L
2. Load the value "0" in ACCU 1
3. Call special function OB 122

4. Read out ACCU 1

» You can determine the status of interrupt processing by reading
out system data word RS 132.

- RS 132 Condition code word "delay all interrupts"

CPU 928B Programming Guide
6-24 C79000-B8576-C898-01

OB 123: Enable/Disable "Delay of Individual Time-Driven Interrupts"

6.8 OB 123: Enable/Disable "Delay of Individual Time-Driven Interrupts”

Using special function organization block OB 123, you can prevent
the insertion of certain time-driven OBs (time-driven interrupts with a
fixed time interval) at one or more consecutive block or operation
boundaries.

Function OB 123 affects the reaction to time-driven interrupts as follows:

Disabling delay of individual time-driven interrupts means all

interrupts will continue to be registered and already pending interrupts
will remain registered. However, registered interrupts will not yet be
processed. All operation or block boundaries will be temporarily
disabled for the processing interrupts. If a time interrupt OB (for
processing a time interrupt with a fixed time base) has already been
started, it is processed to the end.

Disabling delay of individual time-driven interrupts means that with m

immediate effect, all cyclic time-driven interrupts will again be
registered, inserted at the next block or operation boundary
(depending on the setting in DX 0) and processed.

Note

If a specific time-driven interrupt OB is called for the second time
during the "Delay interrupt" phase, a collision of time interrupts
occurs.

Parameters 1. Control word

OB 123 records the interrupts to be disabled in a system-internal
control word.

Bit no.: 15 3210

Control word

CPU 928B Programming Guide
C79000-B8576-C898-01 6-25

OB 123: Enable/Disable "Delay of Individual Time-Driven Interrupts"

The bits of the control word are assigned as follows:

Bit no.

Interrupt

Oto 2

Reserved; these bits must be "0"!

3="1
4="1
=1
=1
=1
=1
=1

10="7

11="7

Time-driven interrupt with fixed time

intervals:
10 ms
20 ms
50 ms
100 ms
200 ms
500 ms
1sec
2 sec
5sec

(OB 10)
(OB 11)
(OB 12)
(OB 13)
(OB 14)
(OB 15)
(OB 16)
(OB 17)
(OB 18)

12to 15

Reserved; these bits must be "0"!

2. Accus
2a)ACCU-2-L

Function No.
Permissible values:

1:

2b) ACCU 1

1, 2 or 3 with:

the control word

The contents of ACCU 1 are loaded in

All the bits in the mask in ACCU 1

marked with'1" are set to "1". The new
control word is loaded in ACCU 1.

All the bits in the mask in ACCU 1

marked with'0" are set to "1" in the
control word. The new control word is

loaded in ACCU 1.

New control word or mask depending on the desired function.

CPU 928B Programming Guide

C79000-B8576-C898-01

OB 123: Enable/Disable "Delay of Individual Time-Driven Interrupts"

Possible errors « lllegal function number in ACCU-2-L
* One of the reserved bits in ACCU 1 (no. 4to 31)issetto’'l’
In the event of erro®B 31 (other runtime errors) is called. If OB 31

is not loaded, the CPU goes to the STOP mode.
In both cases, the error IDA4BH is entered in ACCU-1-L.

Notes * You can scan the status of the control word with the following
program sequence:

1. Load the function number 2 or 3 in ACCU-2-L
2. Load the value '0’ in ACCU 1
3. Call special function OB 123

4. Read out ACCU 1

» You can determine the status of interrupt processing by reading m

out system data word RS 137.

- RS 137 Condition code word "delay individual
time-driven interrupts"

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 27

Setting/Reading the System Time (OB 150)

6.9 Setting/Reading the System Time (OB 150)

Characteristics of the

system time

Function

Parameters

Bit no.

1st word
2nd word
3rd word

4th word

e The resolution is 10 ms for reading and 1 sec for setting.

» Leapyears are taken into account.

» You can select between a 24 hour clock and a 12 hour clock, "am"
(midnight to twelve o’clock), and "pm" (twelve o’clock to
midnight),

« The weekday can be specified

« Input and output in BCD.

« The integral hardware clock for the system time is backed up by

the battery in the PLC rack. If you have set the system time, it also
remains correct following a power down and WARM RESTART.

Using OB 150, you can set or read the date and time of the CPU 928B
in your user program. The date and time are known as the "system
time".

Note
Before you can read out the system time, it must firsebe

1. Data Field forthe Time Parameters

When yousetthe system time, OB 150 takes the system time from a
data field, when youread the system time, OB 150 transfers the
current data to the data field. You can set up this data fieldartea
block or in one of the twélag areas(F or S flags).

The data field consists of four words.

la)Format of tle data field fosetting the hardware clock

15\ \12\11\ \ \8 7\ \ \4\3\ \ \0
Seconds 0
Format Hours Minutes
Day of month Weekday 0
Year Month

CPU 928B Programming Guide
C79000-B8576-C898-01

Setting/Reading the System Time (OB 150)

1b) Format of the data field wherading the hardware clock

Bit no. 15 12 ‘ 11 8 7 4 3 0
1st word Seconds 1/100th second

2nd word | Format Hours Minutes

3rd word Day of month Weekday 0

4th word Year Month

Data field in the flag area

CPU 928B Programming Guide

C79000-B8576-C898-01

The time parameters have the following meaning, permitted range of
values and representation:

(select"am" or

"pm" in bit 14)
Bit14=0: "am"
Bit14=1: "pm"

Parameter Permitted range of values Representation
Seconds 00 to 59 BCD format
1/100 00 to 99
seconds 00 to 59
Minutes 00 to 23 or 01 to 12 depending
Hours on selected format
Weekday 0to 6 where Mo =0,..., Su=6
Day of 01 to 31Y
monthl) 01to 12
Month 00 to 99
Year
Format The format for the hour field is --

as follows:

Bit15=1. 24 hourformat

(bit 14 = 0)
Bit15=0: 12 hour format

1)

The value you input is checked to ensure that the date is logically correct

taking into account leap years after OB 150 is called.

If you set up the data field in a flag area, you must take into account
the following assignment of data field words to flag bytes. "x" is the
parameter "number of the first data field word" (see following page)

that you must enter in ACCU-1-L when OB 150 is called.

Bit no.

1st data field word
2nd data field word
3rd data field word
4th data field word

15

flag byte x

flag byte x+4

flag byte x+1

flag byte x+5

flag byte x+2

flag byte x+6

flag byte x+3

flag byte x+7

Setting/Reading the System Time (OB 150)

Bit no.

Result

15‘ ‘

12

2. Accus
2a)ACCU-2-L

ACCU-2-L contains information on the desired function and the data
field used. It must have the following structure:

11 8 7 0

Function no.

Address area type Data block no.

Possible errors:

Function number,
permitted values: 1 = set system time
2 = Read system time

Address area type,

permitted values: 1 = DB data block
2 = DX data block
3 =F flag area
4 =S flag area

Data block number,

permitted values: 3 to 255
(only for address area type 1 or 2;
irrelevant for address area types 3 or 4)

2b) ACCU-1-L

Number of the 1st data field word,
possible value (dependent on the address

areatype):
DB, DX: 0 to 2044
F flags : Oto 248
(= no. of flag byte 'x’)
Sflags: 0to 1016

(= no. of flag 'x’)

After OB 150 has been processed correctly, the condition code bits
OR,ERAB and OS = 0. All other condition code bits and ACCUs 1
and 2 remain unchanged.

In the event of an erro@B 19 or OB 31is called. If OB 19 or OB 31
is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU 1 and ACCU 2 (see
following table).

CPU 928B Programming Guide
C79000-B8576-C898-01

Setting/Reading the System Time (OB 150)

Table 6-2 OB 150 error IDs

ACCU-1-L ACCU-2-L Cause of error OB called
1A07H - Data block not loaded OB 19
1A4CH 0001H Functionno.=0or> 2 OB 31

0100H Address area type illegal

0101H Data block number illegal

0102H "Number of the first data field word" illegal
0103H Data block length in block header < 5 words
0201H Year specified in data field illegal

0202H Month specified in data field illegal

0203H Day of month specified in data field illegal
0204H Weekday specified in data field illegal
0205H Hour specified in data field illegal

0206H Minute specified in data field illegal

0207H Second specified in data field illegal

0208H 1/100 second in data field not equal to O
0209H Data field word 3/ bit no. 0 to80

020AH Hour format not the same as setting in OB 151

Note
If you select incorrect parameters when setting the system time,
and if the time has been set correctly at least once, the error IDs
are transferred, however, the previously set system time is
retained.

Example

"Setting the time"
You want to set the system time as follows:
"Thurs, 24.11.1991, 11:30, 0 seconds, 24 hour format"

It is assumed that the time parameters will be stored in data block

DB 10 from data word DW 0 onwards. The system time should be set
accurate to the second by triggering a process interrupt (trigger bit,
e.g. | 1.0 - button in the vicinity of the PLC).

First, program data block DB 10 with the following values and load it in
the PLC. You must include the STEP 5 operations for calling OB 150 in
OB 1 in such a way that the operations for calling OB 151 are only
executed in the case of a rising edge of the trigger bit:

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01 6-31

Setting/Reading the System Time (OB 150)

"Setting the time™:

DB 10

(continued)

0: KH=00 0 0 left byte = seconds (BCD), right byte =0

1: KH= 9 1 30 91 = format (=80H) + hour (= 11 BCD)

30 minutes (BCD)

2: KH=2 4 3 0 24 = day of the month (BCD)

3: KH=911093=year (BCD)

The STEP 5 operations in OB 1 for calling for OB 150 are as follows:

10 = month (BCD)

Signal edge of the input for setting the system
time has occurred

STELL.LKH110A _ Values for ACCU-2-L:

L=

L KE +0

:JU OB 150

"Reading the system time":

You want to write the current system time to data block DB 10 from data
word DW 4. You must therefore call OB 150 with the following parameters:

LKH 2

L KF +4

-JU OB 150
'C DB 10

After calling OB 150, the actual system time is stored in the following
form in the data block DB 10 ("Thurs, 24.10.93, 11:30, 20 seconds, 13
hundredths, 24 hour format"):
DW 4:
DW 5:
DW 6:

DW 7:

KH=2013

KH=9130

KH=2430

KH=9110

Address area type = 1 for "data field in DB"
Function number = 1 for "set"

ACCU-1-L:
Number of the 1st data field word = 0
Call OB 150

10A Values for ACCU-2-L:
"I— DBno.=10
Address area type = 1 for "data field in DB"

Function no. = 2 for "read"

ACCU-1-L

Number of 1st data field word = 4
Call OB 150
Open DB 10

Evaluate DB 10

Seconds = 20 (BCD)
1/100 seconds = 13 (BCD)

30 = day of week (3 = Thursday) + bit 0 to bit 3=0

Format = 24 hour (bits 14/15 = 01), hours = 11

(BCD), Minutes = 30 (BCD)
Day of month = 24 (BCD)

Day of week = 3 = Thursday
Year =93 (BCD)

Month = 10 (BCD)

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 151: Setting/Reading the Time for Clock-Driven Interrupts

6.10 OB 151: Setting/Reading the Time for Clock-Driven Interrupts

Function By calling OB 151 you can perform the following:

« program the CPU 928B, to activate the clock-driven time
interrupt ("Time job" - OB 9, see Section 4.5.2) at a
preset time :

- every minute
- every hour

- every day

- every week
- every month
- every year

- once

« read out the current status of a timed job

» cancel a previously generated timed job

You can call OB 151 in the modes RESTART and RUN. Once
generated, a clock-controlled time interrupt is retained following a
WARM RESTART (automatic or manual). A COLD RESTART
clears an existing timed job.

If you generate a new timed job, a currently programmed timed job is
automatically cancelled. This means that anie clock-controlled
time interrupt can be active.

Parameters 1. Data Field for Job Parameters

When yougenerateor cancela timed job, OB 151 takes the required
job parameters from a data field.

When youread outthe current status of a timed job, OB 151 transfers
the current job parameters to a data field.

You can set up this data field indata block or in one of the twdlag
areas(F or Sflags).

The data field consists of four words and has the following format for
both generating and reading out a timed job:

Bit no. 15‘ ‘ ‘12‘11‘ ‘8 7‘ ‘4‘3‘ ‘O
1st word Seconds 0
2nd word Format Hours Minutes
3rd word Day of month Weekday Job type
4th word Year Month

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -33

OB 151: Setting/Reading the Time for Clock-Driven Interrupts

Data field in the flag area

The parameters have the following meanings, permissible value
ranges and representations:

n

Parameter Permissible range of values Representatio
Job type 0to 7 where: BCD format
0 = cancel job or no
job active
1 = every minute
2 = every hour
3 = every day
4 = every week
5 = every month
6 = every year
7 = once
Seconds 00 to 59 BCD format
1/200 second 00 to 99
Minutes 00 to 59
Hours 00 to 23 or 01 to 12 depending
on the selected format
Weekday 0to 6 where Mo =0,..., Su=6
Day of 01 to 319
montt
Month 01to12
Year 00 to 99
Format 2 The format of the hour field is --
as follows:
Bit15=1: 24 hourformat
(bit 14 = 0)
Bit15=0: 12 hourformat
(select "am" or
"pm" in bit 14)
Bit14=0: "am"
Bit14=1: "pm"

1)

correct taking into account leap years.

2)

"Format" must agree with the format set for the system time in OB 150.

When you set up the data field in a flag area, you must take into
account the following assignment of the data field words to the flag
bytes. "X" is the parameter "number of the first data field word" that
you must enter in ACCU-1-L when OB 151 is called.

Bit no. 15 8 7

After calling OB 150, the value specified is checked to ensure it is logically

For the significance of "am" and "pm", see OB 150 in the previous section:

1st data field word
2nd data field word
3rd data field word
4th data field word

flag byte x

flag byte x+4

flag byte x+1

flag byte x+5

flag byte x+2

flag byte x+6

flag byte x+3

flag byte x+7

CPU 928B Programming Guide

C79000-B8576-C898-01

OB 151: Setting/Reading the Time for Clock-Driven Interrupts

2. Accus
2a) ACCU-2-L

ACCU-2-L contains information on the desired function and the data
field used. It must have the following structure:

Bit no. 15‘ ‘ ‘12 11‘ ‘ ‘8 7‘ ‘ ‘ ‘ ‘O

Function no. Address area type Data block no.

Parameters in ACCU-2-L

Function number,
permitted values: 1 =generate job
2 =read job

Address area type,

permitted values: 1 = DB data block
2 = DX data block
3 =F flag area
4 =S flag area

Data block number,
permitted values: 3 to 255 (for address areatype = 1 or 2;
irrelevant for address area type 3 or 4

2b) ACCU-1-L

Number of the 1st data field word,
possible values (dependent on the
address area type):

DB, DX: 0 to 2044

F flags: Oto 248
(= no. of flag byte 'x’)
Sflags: Oto 1016

(= no. of flag byte 'x’)

Note
Itis pointless to generate a timed job cyclically (e.g. by means pf
an unconditional OB 151 call with function number 1 in OB 1).

Result After OB 150 has been processed correctly, the condition code bits
OR, ERAB and OS = 0. All other condition code bits remain
unchanged, as do ACCU 1 and ACCU 2.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-35

OB 151: Setting/Reading the Time for Clock-Driven Interrupts

Note
If thejob type "0" is set in the data field and all other parametefs
are"F" or"FF" (hexadecimal) when you read out a timed job,
thenno timed job is active.

This status can occur as follows:

a) following a COLD RESTART, when no timed job is generated,

b) when a timed job programmed to be executed only once has
been executed

or

¢) when you have cancelled a job.

Possible errors: In the event of an erro§B 19 or OB 31is called. If OB 19 or OB 31
is not loaded, the CPU goes to the stop mode.
In both cases, error IDs are entered in ACCU 1 and ACCU 2 (see
following table).

Table 6-3 OB 151 error IDs

ACCU-1-L ACCU-2-L Cause of error OB called
1A07H - Data block not loaded OB 19
1A4DH 0001H Functionno.=0or> 2 OB 31

0100H Address area type illegal

0101H Data block number illegal

0102H "Number of the first data field word" illegal
0103H Data block length in block header < 5 words
0201H Year specified in data field illegal

0202H Month specified in data field illegal

0203H Day of month specified in data field illegal
0204H Weekday specified in data field illegal
0205H Hour specified in data field illegal

0206H Minute specified in data field illegal

0207H Second specified in data field illegal

0208H 1/100 second in data field not equal to O
0209H Job type in data field > 7

020AH Hour format not the same as setting in OB 150

Note

If you assign incorrect parametensd a valid timed job has
already been generated, the error identifiers are transferred as
indicated abovejowever, the previously generated timed job

is retained.

CPU 928B Programming Guide
6 - 36 C79000-B8576-C898-01

OB 151: Setting/Reading the Time for Clock-Driven Interrupts

Important points
concerning time parameters

Depending on when you want to trigger a clock-driven time interrupt
(timed job) you must select the individual time parameters in certain
combinations. Depending on the time you select for the clock-driven
time interrupt, you must specify certain parameters, while others are
not evaluated by the system program and can therefore be ignored.

The following table indicates which time parameters must be
specified for which timed job (XXX =must be specified,
--- = irrelevant).

Table 6-4 "Time job - Time parameter" assignments

Time of interrupt Seconds| Minu- | Hours | Week- Day Month Year
tes day of
month
every minute XXX
every hour XXX XXX
every day XXX XXX XXX
every week XXX XXX XXX XXX
every month XXX XXX XXX XXX
every year XXX XXX XXX XXX XXX
once XXX XXX XXX XXX XXX XXX

Special features

Examples

Various timed jobs (24 hour format):

« If you select the job type "every year" (= 6) and select " February
29th" as the day of the month and month, then OB 9 will only be
called every leap year.

» If you select the job type "every month" (= 5) and select the value
"29", "30" or "31" then OB 9 will only be called in the months
containing these dates.

1. "Job at the 29th second of every minute"
(12:44:29, 12:45:29 etc):

You must specify the following:

2."Job every hour at xx:14:15":

You must specify the following:

CPU 928B Programming Guide
C79000-B8576-C898-01

job type = 1 (Function no. in
ACCU-2-L=1)
seconds =29

job type = 2 (Function no. in
ACCU-2-L=1)
seconds = 15
minutes = 14

Continued on the next page

OB 151: Setting/Reading the Time for Clock-Driven Interrupts

Various timed jobs (24 hour format): (continued)
3."Job dally at 5:32:47"

You must specify the following: job type = 3 (Function no. in
ACCU-2-L =1)
seconds = 47
minutes = 32
hours = 05

4. "Job every week at 10:50:00":

You must specify the following: job type = 4 (Function no. in
ACCU-2-L=1)
seconds = 00
minutes = 50
hours = 10
weekday= 01

5. "Job every month, on the 14th at 7:30:15":

You must specify the following: job type = 5 (Function no. in
ACCU-2-L=1)
seconds = 15
minutes = 30
hours = 07

day of month= 14

6. "Job every year, on May 1st at 00:01:45™

You must specify the following: job type = 6 (Function no. in
ACCU-2-L=1)
seconds = 45
minutes = 01
hours = 00
day of month= 01
month = 05

7. "Job on December 31st 1999 at 23:55:00":

You must specify the following: job type = 7 (Function no. in
ACCU-2-L=1)

seconds = 00
minutes = 55
hours = 23
day of month= 31
month = 12
year = 99

Continued on the nex page

CPU 928B Programming Guide
6 - 38 C79000-B8576-C898-01

OB 151: Setting/Reading the Time for Clock-Driven Interrupts

Various timed jobs (24 hour format): (continued)
8. "Cancel job™:
You must specify the following: job type = 0 (Function no. in
ACCU-2-L=1)

9. "Read out timed job™:
You must specify the following: function no. in ACCU-2-L =2

If no job is active, you receive the following result in the data field:

Data field word 0O: FFFFH
Data field word 1: FFFFH
Data field word 2: FFFOH
Data field word 3: FFFFH

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -39

OB 152: Cycle Statistics

6.11 OB 152: Cycle Statistics

A series of statistical data relating to the duration of the cycle can be
recorded in the CPU 928B (cycle statistics). Using OB 152, you can

initialize the cycle statistics, read out the statistical data and enable

and disable the recording of statistical data.

Overview The statistical data include the following:
« the duration of the previous cycle,

» the time elapsed in the currently active cycle since the last cycle
boundary,

» the minimum and maximum cycle time since the last initialization
of the cycle statistics,

» the number of cycles since the last initialization of the cycle
statistics,

» the average cycle time: a maximum of the last 256 cycles recorded
in the statistics are used to calculate the average value.

Note

Only "normal” cycles are recorded in the cycle statistics. If the
recording of the duration of the current cycle would falsify the
cycle statistics, e.g. by retriggering or restarting the cycle
monitoring time, these data aret included in the statistics. This
means that "mavericks" do not affect the statistics.

This does, however, have the effect that if the cycle monitoring
time is repeatedly restarted, then only a few or even no data will
be recorded for the statistics (please see in this context the Notes
at the end of Section 6.11 "Falsifying the statistical data").

Enabling/disabling the Following a COLD RESTART (automatic or manual), the statistics
statistics function function isalways disabled and the statistical data éeéeted(the
cycle statistics are initialized). A WARM RESTART (automatic or
manual) does not affect the statistics function or the statistical data.

You can activate the statistics function in the RESTART or RUN
modes using OB 152.

CPU 928B Programming Guide
6 -40 C79000-B8576-C898-01

OB 152: Cycle Statistics

If the statistics function is enabled with OB 152, the statistical data are
updated at each cycle boundary and you can read them out by calling
OB 152.

If you no longer require the statistics function, you can disable the
function in the RESTART or RUN modes, once again using OB 152.
This reduces the cycle time load caused by the updating of the cycle
data at each cycle boundary.

You can also initialize the cycle statistics using OB 152 in the
RESTART or RUN modes. It may, for example, be useful to initialize
the cycle statistics after evaluating the statistical data (possibly also
dependent on the value of the cycle counter).

Statistical data The statistical data are read out directly as individual values using
OB 152 or calculated when OB 152 is called. They are transferred by
OB 152 to ACCU-1-L or ACCU-2-L.

You can determine the following statistical values by calling OB 152: m

Table 6-5 Cycle statistics variables - OB 152

Statistical Significance Format Unit Range of
value values
LASTCYC | Duration of the last completed cycle. Fixed Milli- 0 to 13000

point seconds
number
CURCYC | Time already elapsed in the current cycle. Fixed Milli- 0 to 13000
point seconds
number
MINCYC |Duration of the shortest cycle since the last Fixed Milli- 0 to 13000
initialization of the cycle statistics. point seconds
number
MAXCYC |Duration of the longest cycle since the last Fixed Milli- 0 to 13000
initialization of the cycle statistics. point seconds
number
AVERAGE | Average of the cycle times of the last Fixed Milli- 0 to 13000
(maximum 256) cycleY point | seconds
number
CYCLE |Number of cycles recorded in the statistics Hexa- Number Oto
COUNTER | since the last initialization of the cycle statistics.| decimal | of cycles | OFFFFH
number

D see “calculation of the average value"

CPU 928B Programming Guide
C79000-B8576-C898-01 6-41

OB 152: Cycle Statistics

Calculation of the average
value

Functions

The average value is calculated by OB 152 using the following
algorithm:

Each time the statistical data are updated, the value of LASTCYC is
entered into an internal systemfter each time the statistical data are
updated. This buffer can take a maximum of 256 values. If the buffer
is full, the oldest LASTCYC value is lost and the newest value is
entered. During the updating of the data, the sum of the LASTCYC
values in the buffer is formed so that it always containsnidnt

recent LASTCYC values(maximum 256).

When OB 152 is called, the average value is formed by dividing the
total by the number of LASTCYC values stored in the buffer. In
practical terms, this means that the average value is almost always
formed from the LASTCYC values of thast 256 cycles

When OB 152 is called, you can activate the following individual
functions by means of a function number:

Table 6-6 OB 153 functions

Func- Function
tion no.

0 Disable cycle statistics

1 Read CURCYC /LASTCYC

2 Read MINCYC / MAXCYC

3 Read AVERAGE VALUE / CYCLE COUNTER

8 Initialize cycle statistics

15 Enable cycle statistics

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 152: Cycle Statistics

Parameters ACCU-1-L

ACCU-1-L contains the function no.; it must have the following
structure:

Bitno. |15 4 3 0

0 Function no.

Function no.,
permitted values: see table 6-6

Bit nos. 4 to 15 must always be 0!

After OB 152 is called, the condition codes OS, OREBRAB ='0’,

the RLO is also 0 except in the cases listed below. In addition to this,
the statistical values requested by some functions are transferred to
ACCU-1-L and ACQJ-2-L with some functions (see table below).

Result

Table 6-7 Results of the OB 152 functions

Function Results of the functions

ACCU-1- | ACCU-2-
L L

Significance
of "RLO = 1"

Disable cycle statistics Unchanged --

Read CURCYC /LASTCYC CURCYC LAST-CYC CURCYC is incorrect,
the data of the current

cycle are not used in the

statistics”
Read MINCYC / MAXCYC MINCYC | MAXCYC -
Read AVERAGE VALUE / CYCLE AVERAGE| CYCLE |CYCLE COUNTER
COUNTER COUNTER overflow 2)
VALUE
Initialize cycle statistics Unchanged -
Enable cycle statistics Unchanged --

Y Dueto starting/restarting the cycle monitoring time, cycle error or WARM RESTART

2 |f RLO =1 is set when you read out the cycle counter, then when the condition code is transferred, a system
internal flag for cycle overflow is cleared. This flag is then only set again when the cycle counter overflows again.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 152: Cycle Statistics

Possible errors

Special Features

Reaction to a COLD
RESTART

An error occurs if an incorrect function no. is transferred to
ACCU-1-L (only the numbers 0 to 3, 8 and 15 are permissible).

In the event of an erro@B 31 (other runtime errors) is called. If
OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, the error IDA4EH is entered in ACCU-1-L and
0001His entered in ACCU-2-L.

This section explains several special features of OB 152 during a
COLD RESTART, following a RESTART or when certain events
occur and you should take note of these points if you want to use
OB 152.

The statistical data are initialized during a COLD RESTART. Calling
OB 152 in the first cycle following COLD RESTART reestablishes
the initialization data.

The following table shows how the statistical data are

 initialized following a COLD RESTART

and

» modified during the first three cycles by the system program.

Initialization of Update Update
stat. data by stat. data Etat- d?ta
system program by system y system
Y prog OB 20 st cycle 2nd cycle program 3rd cycle
COLD m
RESTART { T T
OB 152: OB 152: OB 152: OB 152:
"stat. T ‘read stat.” “read stat." "read stat."
CURCYC --.l l CURCYC) CURGYC(2) A CURévc(g_)
1)
LASTCYC 0 0 0 Cycle timeq) | Cycle ime@) | Cycle time | Cycle time
(2))
MINCYC 13 000 13 000 13 000 | Cycle timeq) | Cycle time min. c.t. min. c.t.
1)
MAXCYC 0 0 0 Cycle time) | Cycle time max. c.t. max. c.t.
1)
AVERAGE 0 0 0 Cycle timeq) | Cycle time aver. c.t. aver. c.t.
1)
CYCLEC. 0 0 0 1 1 2 2

Y The value for CURCYC is always read out via OB 152, the cycle monitoring timer. For this reason, it is already
available during the first cycle.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 152: Cycle Statistics

Calling OB 152 in a start-up

When the statistical data are initialized, not only the defaults listed in

the table, but also the internal system buffer for the average are
deleted and an internal flag for cycle counter overflow is reset.

Depending on the type of restart, the OB 152 call to read the statistical

data provides the following values in ACCU-1-L and ACCU-2-L
(columns on a gray background).

WARM RESTART in cycle n

OB 21/22

.

OB 152:
"read s]at."

CURCYC| O

l

LASTCYC

Cycle time(n-1)

MINCYG

incl. cyc. (n-1)

MAXCYC

incl. cyc. (n-1)

AVERAGE

incl. cyc. (n-1)

OB
COLD RESTART
Initialization of
stat. data by OB 20
system program
] []
OB 152: OB 152:
"stat on" "read stat."
CURCYC --l- --- 0)
LASTCYC 0 0 0
MINCYC 13 000 13 000 13 000
MAXCYC 0 0 0
AVERAGE 0 0 0
CYCLEC 0 0 0

CYCLEC.

n-1

CPU 928B Programming Guide

C79000-B8576-C898-01

OB 152: Cycle Statistics

Initializing the statistical data

by calling OB 152

The following table shows how the statistical data are changed when
they are initialized by calling OB 152 in the CYCLE. The columns
with a gray background contain the values transferred when the
statistical data are read.

Cycle ‘R (n+1)a‘ i (T;T - i ‘k (n+1) ﬂ
Update
o] . T
OB 152: OB 152: OB 152: OB 152: OB 152:
‘read stat." ‘read stat” jnjt, stat” “read stat.” "read stat.”
| |
CURCYC | CURCYGpna) CURCYC (n) T CURCYC (n+1)
LASTCYC | Cycle timen-2) | Cycle timen-1) | Cycle time (n-1) 0 0 no 0
MINCYC | incl.cyc.m2) | incl.cyc.n1) | incl.cyc. (1) | 13000 | 13 000 no oon
MAXCYC | incl.cyc.n2) | incl.cyc.n) | incl. cyc. (n-1) 0 0 no 0
AVERAGE | incl.cyc.n2) | incl.cyc.1) | incl. cye. (n-1) 0 0 no 0
CYCLE C. n-2 n-1 n-1 0 0 no 0

Calling OB 152 when the

cycle statistics are disabled

When the statistical data are initialized, not only the defaults listed in
the table, but also the system internal buffer for forming the average
value is deleted and an internal flag for cycle counter overflow is reset.

After the statistical data are initialized by calling OB 152, the data are
only updated by the system program atethe of the first cycleafter
the initialization.

If you disable the cycle statistics by calling OB 152, the statistical
dataof the last updateare retained. If you then use OB 152 to read

the statistical data, it supplies the data from the last update before the
statistics were disabled.

If you read the statistical data following a COLD RESTART, without
enabling the cycle statistics with an OB 152 call, OB 152 supplies the
initialization data.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 152: Cycle Statistics

Falsifying the statistical data

Certain events can cause problems when recording the cycle length of
the current cycle and can lead to incorrect values. In these situations,
the statistical data for the cycle affected are not updated.

These events include the following:

e WARM RESTART

» Starting the cycle monitoring time by calling OB 221

» Restarting the cycle monitoring time by calling OB 222

e Cycle errors

Cycle ‘% (n-1) (n) ‘% (n+1) H‘
Updat —
peate —] Interruption by: ‘ Update
- WARM |
L_|RESTART T
OB 221/222
OB 152: cycle error OB 152: OB 152:
"read Tat." "read stat." “read stat."
CURCYC | CURCYC 1 CURCYC
(n+1)
LASTCYC | Cycletime Cycle time Cycle time no Cycle time
(n-2) (n-1) (n-1)
(n-1)
MINCYC | incl.cyc. (n-2)| incl. cyc. (n-1) incl. cyc. (n-1)) no incl. cyc. (n-1)
MAXCYC | incl.cyc. (n-2)| incl. cyc. (n-1) incl. cyc. (n-1)) no incl. cyc. (n-1)
AVERAGE | incl. cyc. (n-2)| incl. cyc. (n-1) incl. cyc. (n-1)) no incl. cyc. (n-1)
CYCLEC n-2 n-1 n-1 no n-1

1) The value of CURCYC corresponds to the time T that has elapsed since the occurrence of the "problem" in the
current cycle. This is not the length of the whole cycle. To indicate this situation, the RLO is set to "1" in addition
to the values transferred to ACCU-1-L and ACCU-2-L.

CPU 928B Programming Guide

C79000-B8576-C898-01

OB 153: Set/Read Time for Delayed Interrupt

6.12 OB 153: Set/Read Time for Delayed Interrupt

Using OB 153, you can transfer so-called "delay jobs" to the system

program. After a specified delay time "a delayed interrupt” is then

processed (refer to OB 6, Sectii5.2).
Function By calling OB 153, you can do the following:

» define and start a deldiyne,

» stop an activated delay time (cancel delay job),

« read how long the delay time still has to run.

A delay job can be activated in the START UP and RUN modes.
Life of a delay job The delayed interrupt triggered by a delay job is only activated by the

system program in tHeRUN mode (OB 6 call).

Jobs which become due in a mode other than RUN are discarded by

the system programiithout any message

A currently active (but not yet due) job is also discarded if the CPU

changes to the STOP mode or if the power is switched off.
Parameters Accus

a)ACCU-2-L

Delay time in milliseconds (max. 65535)

Permitted value8001H to FFFFH

ACCU-2-L only needs to be supplied with the function bem1’

("define delay time") when OB 153 is called. The contents of

ACCU-2-L are not evaluated in the remaining OB 153 functions.

b) ACCU-1-L

Function no.

Permitted values: 1 =define and start delay time

2 = stop delay time (= cancel job)
3 =read remaining delay time

CPU 928B Programming Guide
6 - 48 C79000-B8576-C898-01

OB 153: Set/Read Time for Delayed Interrupt

Note

If a previously defined delay time is notyet elapsed when a
further delay time is defined, the previously defined time is lost
and the new delay time started.

Result After correct processing of OB 153, the condition code bits OR,
ERAB and OS =0.

When OB 153 is called with the function no. "2’ or '3’, 80-1-L
contains the remaining time to run in milliseconds.

If no delay job is active when OB 153 is called with function no. '2’
or '3’, ACCU-1-L contains the value 0.

Possible errors The errors listed in the following table can occur.
OB 31 (other runtime errors) is called. If OB 31 is not loaded, the
CPU goes to the STOP mode. m
In both cases, error IDs are entered in ACCU-1-L and ACCU-2-L (see

the table below).

Table 6-8 OB 153 error IDs

ACCU-1-L | ACCU-2-L |Bedeutung

1A4FH 0001H Function no. = 0 or >3
0002H lllegal delay time

Examples

Define and start delay time:

When an AUTOMATIC WARM RESTART is performed, after 5 seconds a certain
STEP 5 operation sequence must be run through once. To do this, the

delay time is defined and started in start-up organization block OB 22.

The STEP 5 operations in OB 22 for calling OB 153:

LKE+5000 Value for ACCU-2-L: 5000 ms

LKF +1 Value for ACCU-1-L: function no. = 1 for
: "define and start delay time"

;JU OB 153 Call OB 153

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 49

OB 153: Set/Read Time for Delayed Interrupt

Stop delay time (cancel job)

STEP 5 operations for calling OB 153:

;L KF +2 Value for ACCU-1-L: function no. = 2 for
: "stop delay time"

;JU OB 153 Call OB 153

Read out remaining time of a delay job:

STEP 5 operations for calling OB 153:

;L KF +3 Value for ACCU-1-L: function no. = 3 for
: “"read out remaining time"

;JU OB 153 Call OB 153

ACCU-1-L contains the time the delay job still
has to run.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 160 to 163: Loop Counters

6.13 OB 160 to 163: Loop Counters

By using these special function operation blocks, you can implement
program loops with a particaly fast runtime.

Function A system data word is assigned to each of the four special function
OBs as follows:

+ RS60: OB160

RS 61: OB 161

+ RS62: OB162

RS 63: OB 163

Programming the You transfer the value for the required number of loop repetitions to

program loop one of these system data words. When you then call the appropriate
special function OB, the loop counter in the system data word is
decremented by 1. The loop is repeated until the loop counter reaches
the value zero.

Note

If the loop counter is already zero before the special function OB
is called, it is decremented by 1; the loop is then run through
65,536 times.

Parameters System data word RS 60 - 63

Loop counters
possible values: 0 - 65 535 decimal (0 to FFFFH)

CPU 928B Programming Guide
C79000-B8576-C898-01 6-51

OB 160 to 163: Loop Counters

Result Loop counter in RLO is set (RLO = 1)
system data word >0:

Loop counter in RLO is cleared (RLO =0)
system data word = 0:

The other bit and word condition codes are always cleared.

The accumulators are not changed and not evaluated. This means that
they are still available at the beginning of the next loop and do not
need to be set again.

Possible errors none

Example

Programming a loop counter

The required number of loop repetitions is contained in flag word x.

Initialize L KBO

the loop: L FWXx Loop counter
A=F
:JC =M002
‘T RS62 Transfer loop counter
: to system data word
"Loop .
program"; MOO01 :
Manage loop: ':JU OB162 Loop counter
:JC =M001 If RLO =1 the
: loop is run
through again
Further
program M002 :.

For a further example, refer to Section 9.3 "TNW and TNB:
Transferring Memory Fields".

CPU 928B Programming Guide
6 -52 C79000-B8576-C898-01

OB 170: Read Block Stack (BSTACK)

6.14 OB 170: Read Block Stack (BSTACK)

Starting with OB 1 or FB 0, the block stack contains all the blocks
that have been called in sequence and that have notyet been
completely processed.

Function Using the special function organization block OB 170, you can read
the entries currently in the BSTACK into a data block. In this way,
you can find out how many entries are currently in the BSTACK and
how much space is still available for further entries.
For each entry, you obtain the return address (step address counter =
SAC), the absolute start address of the data block valid in this block
(DBA) and its length (number of data words = DBL).

Note
Before you call OB 170, you must first open a data block (DB or

DX) with sufficient length. Four data words are required for
each BSTACK entry.

Parameters Accus
a)ACCU-2-L

Number of the data word (DW n) from which the entries are to be
stored in the open DB (offset)

b) ACCU-1-L

Required number of BSTACK elements;
Possible values: 1-62

Example: if ACCU-1-L contains the value "1", you obtain the last
BSTACKentry, if it contains "2", you obtain the last
and one before last etc.

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 53

OB 170: Read Block Stack (BSTACK)

Result After OB 170 has been calledccessfully
» the offset in the data block is still contained in ACCU-2-L

» theactualnumber of BSTACK elements represented is in
ACCU-1-LY

e« The RLO s cleared.
e The condition codes CC 0 and CC 1 can be analyzed.

« All other bit and word condition codes are cleared.

Y possible values: 0 - 62, where the represented number is less than or equal to
the required number
0 ="no BSTACK entry exists" or "error"
(Multiply the contents of ACCU-1-L by four to obtain the
number of data words written to the DB).

RLO, CCOandCC 1

settings
RLO CC1 CCO Scan with Meaning
0 0 1 JM Existing number of
BSTACK elements
< required number
0 0 0 Jz Existing number of
BSTACK elements
= required number
0 1 0 JP Existing number of
BSTACK elements
> required number
1 1 1 JC Error
Storing the BSTACK The contents of the BSTACK are stored in the data block as follows

elements in open data blocks when OB 170 is called (see also Fig. 6-3):
A = BSTACK element number (62 to 1)

(As soon as the last BSTACK element is outputyou can determine the
remaining space: A = 17 reserve = A -1 =16)

B = Depth if the BSTACK element (1 to 62)

CPU 928B Programming Guide
6-54 C79000-B8576-C898-01

OB 170: Read Block Stack (BSTACK)

Block header
DWO
Offset —— DWn A B
DWn+1 SAC | lastentry in the
BSTACK (B=1)
DWn+2 DBA
DWn+3 Length
DWn+4 A B
DWn+5 SAC
| second last entry
DWn+6 DBA inthe BSTACK (B =2)
DWN+7 Length
older BSTACK entries
Fig. 6-3 Storing BSTACK entries in a data block

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 55

OB 170: Read Block Stack (BSTACK)

Possible errors » No data block opened

» Opened data block does not exist or is not long enough to take the

required number of BSTACK entries

 lllegal parameters in ACCU 1 and ACCU 2

If an error occurs, the RLO and the condition codes CC 0 and CC 1

are set (RLO, CC 0 and CC 1 = 1). The remaining bit and word

condition codes are cleared. The contents of ACCU-1-L are set to "0".

Example

You want to read the last three BSTACK entries into data block DX 10.
You want the entries to be stored in DX 10 from data word DW 16 onwards
(see Figs. 6.4 and 6.5).

:CX DX 10 ;open DX 10

L KY 0,16 ;BSTACK entries to be stored from DW 16 onwards
L KY 03 ;you require the last three BSTACK entries

:JU OB 170

Six blocks are entered in the BSTACK as follows:

BSTACK
Element 1
|
Element 56
Element 57 — Depth 1 (last BSTACK entry)
Element 58 Depth 2
Element 59 -~ Depth 3

Fig. 6-4 Contents of the BSTACK in this example

Continued on the next pag e

CPU 928B Programming Guide
6 - 56 C79000-B8576-C898-01

OB 170: Read Block Stack (BSTACK)

Continuation of the example:

After the special function OB is called, DX 10 contains the following:

DX 10
Block header
DW 0
Offset—— DW 16 57 1 Depth 1
DW 17 SAC
DW 18 DBA
DW 19 Length
DW 20 58 2 Depth 2
DW 21 SAC
DW 22 DBA
DW 23 Length
DW 24 59 3 Depth 3
ACCU-2-L= 16 (Offset)
DW 25 SAC
ACCU-1-L= 3 (No. of elements in DX 10)
DW 26 DBA RLO = 0 (No errors)
cco -0 (No. of BSTACK elements
DW 27 Length greater then requested
CC1 =
number of elements)
Fig. 6-5 Contents of DX 10 in this example after OB 170 is called

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 180: Accessing Variable Data Blocks

6.15 OB 180: Accessing Variable Data Blocks

DBA/DBL register

Applications of OB 180

When a data block is opened with the operations C DB and CX DX,
the DBA register (data block start address) is loaded with the address
of data word DW 0, stored in DB 0.

Access to data blocks with operations such as L DR 60 or
DO DW 240 etc. are always relative to the data block start address.

In addition to the DBA register, the DBL register (data block length)

is always loaded when a data block is called. This register contains the
length (in words) of the opened DB or DX data bledthout the

block header.

Note

A maximum of up to 4091 data words can be entered in the DBL
register.

STEP 5 access to data words is only possible up to a maximu
data word number of 255.

Example

The DBA register the address of the memory word
in which DW O to DB 17 is stored: DBA = 151BH

The number of data words is stored in the DBL
register: DBL = 8 (DW 0 to DW 7)

Since access to the data words by means of the
STEP 5 operations L DW, U D, DO DW etc. is
always relative to DBA, 3 is added to 151BH in
order to access, e.g. DW 3.

Data word DW 3 is stored under the address
151EH.

The DBL register is used to check whether a
transfer or load operation is pending. T DW 7

is permissible but T DW 8 or L DW 8 are not.

Special function OB 180 allows you to access structured data in an
opened data block. You can do this by shifting the starting address of
the data block entered in the DBA register to the end of the data block
with the help of OB 180. Simultaneously to shifting the starting
address, OB 180 decrements the block length entered in the DBL
register accordingly. It is important that this is done so that the CPU
can monitor load and transfer operations in the case of later accesses
to the data block.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 180: Accessing Variable Data Blocks

» Access to DBs with a length greater than 261 words (five words
header) over the whole length of the DB. Using OB 180, you can
move an "access window" of 256 data words over the length of the
data block.

« Handling data structures
A data block can be divided into several data records of the same
length and with the data arranged in the same order. This is known
as structuring the data block. A data block structured in this way
might, for example, contain the data of several subprocesses, with
a temperature value in the first data word, a pressure in the second
and other values for the subprocess in the remaining data words.
Using OB 180, you can access the data of each subprocess using
the same operations (e.g. L DD, S D, T DR etc.), by loading the
DBA register with the start address for the subprocess.

In contrast to other substitution mechanisms, (substitution =
indexed parameter assignment) you obtain simpler and faster
subroutines.

Function With OB 180, the starting address of the current data block is shifted m
by a specified value. In doing so, account is taken of the fact that the
remaining available length of the DB has to be reduced (the DBA and
DBL registers are loaded in correspondence to the shift).

Note
Before you call OB 180, a data block (DB or DX) with an
adequate Engthmust already be open.

Parameters ACCU-1-L

offset (number of data words, by which you want to shift the data
block start address),
possible values: 8 ACCU-1-L < DBL

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -59

OB 180: Accessing Variable Data Blocks

Result

After OB 180 has been calledccessfully

« the value of the DBA register (= address of DW 0) is raised by the
value of ACCU-1-L

» the value of the DBL register is reduced by the value of ACCU-1-L
» the RLOiscleared (RLO =0)

» all other bit and word condition codes are cleared

Possible errors » Negative length

« No data block opened

» Contents of ACCU-1-I= DBL

In the event of an error (ACCU-1+ DBL) the DBA and DBL
registers remain unchanged. The RLO is set (RLO = 1). The

remaining bit and word condition codes are cleared.

If the DBL register contains the value "0", OB 180 recognizes that no
data block is open. The RLO is set (RLO = 1), signalling an error.

Resetting DBA and DBL to Opening the data block again using the operations C DB or CX DX,
the initial value re-establishes the initial setting.

Example

You want to shift the data block start address (DBA = 151B) in DB 17
(DBL = 8) by two data words.

:C DB 17 open DB 17
L KB 2 shift / offset as constant
:JU OB 180 call OB 180: DBA and DBL are adjusted

When you call OB 180, the data word stored at e.g. address 1520 can no
longer be addressed as DW 5, but must be addressed as DW 3 etc. (see
Fig. 6-6).

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 180: Accessing Variable Data Blocks

Continuation of the example:

Addr. (hex.) DB 17
1516
1517 5 words
block header

DBA j|g ———151B
151C
DBA hew—— . 151D ccce bW 0
151E dddd DW 1 DBL g4
151F eeee DwW 2
DBL hew
1520 ffff DW 3
1521 9999 Dw 4
1522 hhhh DW 5
15 0
Fig. 6-6 Shifting the DB start address
Because the DBL register is adjusted at the same time, error monitoring

is guaranteed :the operation T DW 5 is permitted, while T DW 6/LW 6
would cause an error.

If you call OB 180 again, the DBA can be increased again (and the DBL is
further reduced). The operation C DB 17 re-establishes the initial state
(DBA = 151B, DBL = 8).

If DB 17 has a length of, for example, 258 data words, you cannot access
DW 256 and DW 257 using STEP 5 operations. If you shift the DBA register
by two, you can address data words 256 and 257 using "DW 254" and

"DW 255",

For more information about the DBA/DBL registers, refer to Chapter 9.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 181: Testing Data Blocks (DB/DX)

6.16 OB 181: Testing Data Blocks (DB/DX)

With the special function organization block OB 181 you can check
the following:

» whether a particular DB or DX data block exists,
» the address of the first data word of the data block,
» how many data words the data block contains,

« the memory type and area (user memory: RAM or EPROM,
DB-RAM).

Application of OB 181 The "test DB/DX" function is useful before the operations
TNB/TNW, G DB/GX DX and before calling the special function
organization blocks OB 182, OB 254 and OB 255.

You can, for example, call OB 181 before transferring a group of data

words, to make sure that the destination data block is both valid and
long enough to take all the data words you wish to transfer.

Function OB 181 checks that a specified data block exists and returns the
characteristic parameters of the data block as a result.

Parameters ACCU-1-L
a)ACCU-1-L L:

block number
possible values: 1to 255

b) ACCU-1-LH:

block identifier
possible values: 1=DB
2=DX

CPU 928B Programming Guide
6 -62 C79000-B8576-C898-01

OB 181: Testing Data Blocks (DB/DX)

Result « |f the blockdoes existin the CPU:

ACCU-1-L: contains the address of the first data
word (DW 0),

ACCU-2-L: contains the length of the data block in words
(without block header),
Example: ACCU-2-L contains the value "7":
the data block consists of DW 0 to DW 6.

- RLO: =0

- CC0/CC 1: are affected according to the location of the
block (see following list),

- the remaining
bit and word
condition codes:are cleared.

» If the data blockioes not exisin the memory or the parameter
assignment is incorrect:

- ACCU 1 and 2:are not changed
- RLO: =1

-cco/ccl =1

the remaining
bit and word
condition codes:are cleared

RLO, CC1, CCO The following condition code bits are set according to the check
result. The condition code bits can be evaluated by the operations
listed in the "Scan" column of the table:

RLO CC1 CCO Scan Meaning

0 0 1 JM DB/DX DB/DX in DB/DX
in user EPROM exists
submodule (read-only)

0 0 0 JZ DB/DX in RAM

0 1 0 JP DB/DX in DB | (read/write)
RAM

1 1 1 JC DB/DX does not exist or there is an error

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 63

OB 181: Testing Data Blocks (DB/DX)

Possible errors « Incorrect block number (illegal: 0: DB 0/DX 0)

» Incorrect block identifier (permitted: 1 = DB, 2 = DX; illegal: O,
3 to 255)

* memory error

Examples Refer to Section 8.3.2 / Section 9.2 / Section 9.3.

CPU 928B Programming Guide
6 - 64 C79000-B8576-C898-01

OB 182: Copying a Data Area

6.17 OB 182: Copying a Data Area

Function

Parameters

Bit no. 15

OB 182 copies a data field of variable length from one data block to
another. You can use DB and DX data blocks as the source and
destination blocks. You can select the start of the field in the source
and destination data block as required. OB 182 can copy a maximum
of 4091 data words. It contains pseudo operation boundaries.

Note
The source and destination block can be identical; the data areas
of the source and destination can overlap. driginal data of

the source area are copied unchanged tddktnation area

even if there is an overlap. (Thesa overlapping in the source

is overwritten following the copying.) You can use this feature i
certain situations, for example to shift a data area within a blocl

=)

N

1. Data Field with Parameters for Copying Functions

Before you call OB 182, supply a data field with all the data required
for the copying. This data field can be set up in a DB or DX data
block, orin the F or S flag area.

The data field defines the source and destination data block, the field
start address in both blocks and the number of data words to be
transferred. It consists of 5 words.

8 7 0

1st word

Source DB type Source DB no.

2nd word

No. of 1st data word in source DB to be transferred

3rd word

Dest. DB type Dest. DB no.

4th word

No. of 1st data word to be written in dest. DB

5th word

Number of data words

CPU 928B Programming Guide

C79000-B8576-C898-01

OB 182: Copying a Data Area

The range of values and meaning of the parameters is as follows:

Parameters Permissible value range

Data block type (source and destination) 1 = DB
2 =DX

Data block humber (source and 3...255
destination)

No. of the 1st data word (source and |0...4090
destination)

Number of data words 1...4091

Data field in the flag area If you set up the data field in the flag area, you must take into account
the following assignment of data field words to flag bytes. "x" is the
parameter "no. of the 1st data field word", that you must store in
ACCU-1-L when OB 182 is called.

Bit no. |15 8 7 0
1st data field word Flag byte x Flag byte x+1
2nd data field word Flag byte x+2 Flag byte x+3
3rd data field word Flag byte x+4 Flag byte x+5
4th data field word Flag byte x+6 Flag byte x+7
5th data field word Flag byte x+8 Flag byte x+9
2. Accus
2a)ACCU-2-L

Der ACCU-2-L enghélt Angaben zum verwendeten Datenfeld. Er
muf3 folgenden Aufbau haben:

Bitno. 15, , | o, o, 87, o 4 v 4 4 0

Address area type Data block no.

Parameters in ACCU-2-L

Address area type,

permitted values: 1 = DB data block
2 = DX data block
3 =F flag area
4 =S flag area

Data block no.,

permitted values : 3 to 255 (in the case of address area type "1"
or "2" only; irrelevant in the case of address
area type "3" or "4")

CPU 928B Programming Guide
6 - 66 C79000-B8576-C898-01

OB 182: Copying a Data Area

2b)ACCU-1-L

Number of the 1st data field word,
permitted values (depending on
the address area type):

DB, DX: 0...2043

F flags: 0...246
(= no. of flag byte "x")
Sflags: 0...1014

(= no. of flag byte "x")

Result After OB 182 is correctly executed, the condition code bits OR,
ERAB and OS = 0. All other condition code bits and ACCUs 1 and 2
are unchanged.

Reactions to errors In the event of an erro@B 19 or OB 31 (other runtime errors) is

called. If OB 19 or OB 31 is not loaded the CPU goes to the STOP m
mode.

In both cases, error identifiers are transferred to ACCU 1 and
ACCU 2 (see following table).

Table 6-9 OB 182 error IDs

ACCU-1-L |ACCU-2-L |Cause of error OB called
1A06H - Data block not loaded OB 19
1A34H 0001H Data field written to incorrectly OB 31

0100H Address area type not permitted

0101H Data block number not permitted

0102H Number of the first data field word not permitted
0200H Source data block type not permitted

0201H Source data block number not permitted

0202H Number of 1st data word in the source DB to be
transferred not permitted

0203H Length of the source data block in the block header <5
0210H words

0211H Destination data block type not permitted

0212H Destination data block number not permitted

0213H Number of the 1st data word to be written to in the
destination DB not permitted

0220H Length of the destination data block in the block
header < 5 words

0221H Number of data words to be transferred not permitted
0222H (=0 or>4091)

0223H Source data block too short

Destination data block too short

Destination data block is in an EPROM

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 67

OB 190/0B 192: Transferring Flags to a Data Block

6.18 OB 190/0B 192: Transferring Flags to a Data Block

Application

Function

With organization blocks OB 190 and OB 192, you can transfer a
selected number of flag bytes to a data block.

This can, for example, be an advantage before block calls, in error
organization blocks or when cyclic program execution is interrupted
by a time or process interrupt.

Using OB 191 and OB 193, you can then write these flag bytes back
from the data block.

Note
Use OB 190 and OB 191 to save and read back flag bytes, since
the time required is ¢semely short.

Before you call OB 190/192, a data block (DB/DX) must already
be open.

OBs 190/192 only transfer flag bytiesm the F flag areato a
data block, thegannot transfer flag bytes from th flag area

After you call OB 190/192, the flag bytes are written to the open data
block from the specified data word address. OBs 190/192 take the flag
area to be saved from ACCU 2.

OBs 190 and 192 are identical except for the way in which they
transfer the flag bytes:

OB 190 transfers the flags bytes
OB 192 transfers the flags words.
This difference is significant, when the data transferred to the data

block are intended for processing and you are not simply using the
data block as a buffer.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 190/0B 192: Transferring Flags to a Data Block

The following diagram illustrates the difference.

Copy flags with OB 190: OB 192:

Flags ——M Data block Data block

7 0 15 P g7 PR g 15 Pt g7 PR
FY O 0 1 0 DW 0 0 1
FY 1 1 3 2 DW 1 2 3
FY 2 2 4 DW 2 4
FY 3 3 DW3
4

Fig. 6-7 Transferring in bytes (OB 190) and words (OB 192)

Note

If you transfer amdd number of flag bytes, onlyalf thelast
data word in the data block is used. WitB 190, theleft date in
the destination DB is unchanged, witB 192theright date is
unchanged.

Parameters 1. Specifying the source:
la)ACCU-2-LH

First flag byte to be transferred,
possible values: 0to 255

1b)ACCU-2-L L

Last flag byte to be transferred,
possible values: 0to 255

(The last flag byte nust be=> the first flag byte)

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -69

OB 190/0B 192: Transferring Flags to a Data Block

Result

Possible errors

2. Specifying the destination
ACCU-1-L
Number of the first data word to be written to in the open data block:

The permitted values depend on the length of the data block in the
memory. Numbers greater than 255 may occur

If the special function OBs 190/192 are processeckctly, the RLO
is cleared (RLO = 0). The ACCUs remain unchanged.

If anerror occurs, the RLO is set (RLO = 1), the ACCUs remain
unchanged.

No DB or DX data block opened

Incorrect flag area (last flag byte < first flag byte)

» Data word number does not exist

DB or DX data block not long enough

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 191/0B 193: Transferring Data Fields to a Flag Area

6.19 OB 191/0B 193: Transferring Data Fields to a Flag Area

Application With the organization blocks OB 191 and OB 193 you can transfer
data from a data block to the flag area. With this function, you can, for
example, write flag bytes you have saved in a data block back to the
flag area.

The only difference between OB91/193 and OBs 190/192, is that
the source and destination are reversed:

OB 190/192: Flagarea ————— Data block
OB 191/193: Flagarea ———— Data block
Note

Before you call OB 191/193, a data blocksafficient length

(DB/DX) must be opened. m

OBs 191/193 transfer from the data block only toRtkag area
and not to the flag area

Function After OB 191/193 is called, data words starting from the data word
address specified are read out of the opened data block and transferred
to the flag area.

OBs 191 and 193 are identical, except for the way in which they
transfer data.

OB 191 transfers data wortsbytes
OB 193 transfers data wortlswords.

The figure on the next page illustrates this difference.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-71

OB 191/0OB 193: Transferring Data Fields to a Flag Area

Data block OB 191
DL DR
15 87 0
DW 0 1 0 (DR 0)
DW 1 3 2 (DL 0)
DW 2 5 4 (DR 1)
DW 3 6 (DL 1)
Data block OB 193
DL DR
15 87 0
DW 0 1 0 (DL 0)
DW 1 3 2 (DR 0)
DW 2 5 4 (DL 1)
DW 3 6 (DR 1)
Fig. 6-8 Transferring in bytes (OB 191) and words (OB 193)

Flags
7 0
0 FY O
1 FY 1
2 FY 2
3 FY 3
Flags
7 0
1 FY 0
0 FY 1
3 FY 2
2 FY 3

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 191/0B 193: Transferring Data Fields to a Flag Area

Parameters 1. Specifying the source:
1a)ACCU-2-L

Number of the first data word in the open data block to be transferred

2. Specifying the destination:
2a)ACCU-1-LH

First flag byte to be written to,
possible values: 0to 255
2b)ACCU-1-1 L

Last flag byte to be written to,
possible values: 0to 255

(The last flag byte nust be=> the first flag byte) m

Result If special function OBs 191/193 are processedectly, the RLO is
cleared (RLO = 0). The ACCUs remain unchanged.

In the event of amrror, the RLO is set (RLO = 1), the ACCUs
remain unchanged.

Possible errors « No DB or DX data block open
« Incorrect flag area (last flag byte < first flag byte)
« Data word number does not exist

« DB or DX data block not long enough

CPU 928B Programming Guide
C79000-B8576-C898-01 6-73

OB 191/0OB 193: Transferring Data Fields to a Flag Area

Example 1

Before program block PB 12 is called, all the flags (FY 0 to FY 255) must
be saved in data block DX 37 from address 100 onwards and then written back
to the flag area.

Saving: ‘CX DX37 Call the data block
'L KY 0,255 Flag area FYO to FY255
'L KB100 Number of the 1st data word in the
: destination DB
:JU OB 190 Save flags

Block change: :JU PB12

Writing back: (Data block already called)
'L KB100 Number of the 1st data word in
: the source DB
'L KY 0,255 Flag area FYO to FY255
:JU OB 191 Write back flags
Example 2

Flags used by the cyclic user program must not be used by a time or
process-driven user program. Each program processing level must have a
particular section of the flag area assigned to it.

e.g.: Cyclic user program: FYOFY99
Time-driven user program: FY100 FY199
Process interrupt-driven user program: FY200 FY255

If, however, the cyclic user program is already using all 256 flag bytes

and the time-driven user program also requires all 256 flag bytes, the

flags must be swapped over when the processing level is changed and the old
flags stored until the program returns to the original processing level.

The quickest way to save and load these flags is with the special function
blocks OB 190 and OB 191. Fig. 6-9 illustrates how a flag area FYx to FYy
used by both OB 1 and OB 13 (100 ms time interrupt) can be buffered in a
data block DBx.

Continued on the next page

CPU 928B Programming Guide
6-74 C79000-B8576-C898-01

OB 191/0B 193: Transferring Data Fields to a Flag Area

Continuation of example 2:

OB 1
OB 13 OB 190 DB z
| |FY X - Save DW a-b
FYy the FYs
DBz
0OB191
N DW a-b Write the FY x -
FYs back FYy
Fig. 6-9 Saving the areas when the program processing level changes

STEP 5 program in OB 13:

:C DB 100
L KY 0255
L KB 128
Ju OB 190
L KB 128
L KY 0255
Ju OB 191
:C DB 100
L KY 0255
L KB 128
Ju OB 190
L KB O

L KY 0255

Ju OB 191

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 191/0OB 193: Transferring Data Fields to a Flag Area

Further applications for organization blocks OB 190 to 193

- Inthe CPU 928B, operations involving the processing of single bits
(A, O,ON, AN, S, R, =) that access the flag area are far faster than
comparable operations that access data blocks (compare, for example the
operations "A F" — "AD"or"SF* "SDY%)—

You can speed up your program if you copy data to the flag area,
process them there and then return them to the data block.

- A high byte and low byte in a data block can be swapped over without
complicated programming by copying the data words to the flag area
using the appropriate OBs and then transferring them back as
illustrated by Fig. 6-10.

Data block Flags Data block
15 87 0 7 0 15 87 0
A B FY B A DW
DW x OB 193 A Y 0B 190 X
DW x+1 C D B FY y+1 D C DW x+1
C FY y+2
D

Fig. 6-10 Swapping the high byte and low byte in a DB using OB 193/0B 190

- You can shift data fields within a data block by specifying a different
data word but the same DB number for transferring the data back to
the DB.

CPU 928B Programming Guide
6-76 C79000-B8576-C898-01

OB 200 to OB 205: Multiprocessor Communication

6.20 OB 200 to OB 205: Multiprocessor Communication

These special function organization blocks are described in detail in
Chapter 10.

You can use the special function organization blocks OB 200 and
OB 202 to OB 205 to transfer data between CPUs in multiprocessor
operation using the coordinator 923C.
e OB 200: initialize

This special function organization block sets up a memory area in

the 923C coordinator. This memory isu#fbr for the data fields
that are transferred.

e OB 202:send
This function transfers a data field to thefbr of the 923C
coordinator and indicates how many data fields can still be sent.

e OB 203:send test

The special function OB 203 determines the number of free
memory fields in the buffer of the 923C coordinator.

e OB 204:receive
This function transfers a data field from the buffer of the

923C coordinator and indicates how many data fields can still be
received.

e OB 205: receave test

The special function OB 205 determines the number of occupied
memory fields in the buffer of the 923C coordinator.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-77

OB 216 to OB 218: Page Access

6.21 OB 216to OB 218: Page Access

What are pages?

To implement a large number of communications registers, within the
address range of the S5 bus, an address area with a length of 1024
bytes (2048 bytes are reserved) is imaged 256 times on the memory.
Because these 256 images are stored beside or behind each other like
individual "pages", these memory areas are also referred to as a "page
memory".

In multiprocessor operation, allodules involved can only accesse
page of this memory area at any one time, all the remaining pages
must be disabled for both reading and writing.

A page is addressed via a page address register that exists on all
modules perating with pages and that has a fixed address on the S5
bus. You set the numbers (addresses) of the pages on each of these
modules using a DIL switch, so that each page can only exists once in
the PLC.

Before reading or writing to a page, the CPU specifies the page
number by writing to the page address register. All the modules that
operate according to this procedure of the S5 bus receive this number
simultaneously("broadcast"') and store it in their memory. Only the
page addressed in this way can be written to or read from in the page
memory of the S5 bus, all other pages are disabled.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 216 to OB 218: Page Access

How to access pages You can use organization blocks OB 216 to OB 218 and several
STEP 5 operations (see Chapter 9) to access the pages.

The organization blocks contain the following functions:
e OB 216:

write a byte/word/double word to a page

« OB 217:

reads a byte/word/double word from a page

« OB 218:

the CPU occupies a page (used for coordination in multiprocessor

You can use these functions for test purposes and for programming
handling blocks or similar functions.

Note

Whenever possible, only program access to pages by calling
OB 216 to OB 218. You should only use the available STEP 5
operations if you have considerable experience of the system.

Normally, you can execute all functions using the standard
function blocks "handling blocks" and the integrated function
organization blocks "multiprocessor communication” (OB 200,
OB 202 to OB 205), with which all page access is handled
"automatically™.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-79

OB 216 to OB 218: Page Access

Address areas for
peripherals on the S5 bus

Page length Address area ampied
1024 addresses (byte or word FAQOH - F7FFH
addresses)
2048 addresses (byte or word FA00H - FBFFH
addresses)
Bit 7 0
F000
P area
F100 Multiple memory areab
O area Length: 1024 or 2048 bytes
F200
IPC flags on P /| Page no. 255 P -
coordinator Y y
F300 System area v W 3
(semaphores) /‘ 5 /
on the coordinator B ﬂ 1
F400 b 0 y
age no. y
/
Address space of a page
FCoo Distributed peripherals
(or free)
FEFF Page address register
FFOO0
not occupied
FFFF
Fig. 6-11 Location of the page address area on the S5 bus
CPU 928B Programming Guide
6 -80 C79000-B8576-C898-01

OB 216 to OB 218: Page Access

You specify the page to be used when you assign parameters to the
special function organization blocks OB 216, OB 217 and OB 218.
The number of the "currently active" page is then automatically
entered in a memory location with the address OFEFFH (see Fig.
6-11). All addresses then refer to the page whose number is entered.

Note

You cannot read the page address register with the address
OFEFF H. At this address, you can, however, read out the bus
error register on the coordinator module 923C (see
S5-135U/155U System Manual).

Notes on assigning When a byte/word/double word is written (OB 216) and read
parameters (OB 217) to/from a page, the bytes are referenced in the following
order:
7 0
Address n Byte Byte format
Address n High byte
Word format
Address n+1 Low byte
Address n H byte in H word
Address n+1 L byte in H word
Double word format
Address n+2 H byte in L word
Address n+3 L byte in L word

Fig. 6-12 Location of the bytes when writing (OB 216) / reading (OB 217) to/from a page in words or double
words

CPU 928B Programming Guide
C79000-B8576-C898-01 6-81

OB 216 to OB 218: Page Access

6.21.1
OB 216: Writing to a Page

Function The special function organization block transfers a byte, word or
double word from ACCU 1 (right-justified) to a particular page.
Theaddressing of the pagen single or multiprocessor operation and
thetransfer of the complete data unit(1, 2 or 4 bytes) is one
program function and cannot be interrupted.

Parameters Accus
a)ACCU-3-LH
Identifier of the data to be transferred,
possible values: 0 = byte
1 = word

2 = double word

b) ACCU-3-LL

Current page number,

possible values: 0 to 255
c)ACCU-2-L

Destination address on the page,
possible values: 0 to 2047

d)ACCU 1

Data to be written
(byte, word, double word: right-justified)

CPU 928B Programming Guide
6 -82 C79000-B8576-C898-01

OB 216 to OB 218: Page Access

ACCU contents before writing:

— High word e Low word _.
High byte Low byte High byte Low byte
ACCU 4 X I X X I X
Length ID ' Page number
ACCU 3 « « 0: byte (8 bits) 0to 255

1: word (16 bits)

2: double word (32 bits) '

Address (relative to start of page)

0 ... 2047 if length ID 0 (byte)

ACCU 2 X 1 .
' 0 ... 2046 if length ID 1 (word)
0 ... 2044 if length ID 2 (double word)
X ~—— data (8 bits)—
ACCU 1 X . data (16 bits) .
data (32 bits)
31 24 23 1615 8'7 0
Fig. 6-13 ACCU contents before calling OB 216
Result « |If the data is written to the pagerrectly:
- ACCU 1 and ACCU 3: remain unchanged.
- ACCU-2-L: contains a value incremented by 1,

2 or 4 (depending on the length of
the data transferred)

- RLO: =1

the remaining bit and
word condition codes: are cleared

« |If the datacannot be written to the page
- all ACCUs: remain unchanged
- RLO: =0

- all remaining bit and
word condition codes: are cleared.

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 83

OB 216 to OB 218: Page Access

Possible errors

6.21.2
OB 217: Reading from
a Page

Function

Parameters

» wrong length ID in ACCU-3-LH
« destination address on the page is wrong or does not exist

» specified page number does not exist

The special function organization block transfers a byte, word or
double word from a specific page to ACCU 1 (right-justified).
Addressingthe pagein the single and multiprocessor modes and
transferring the complete data(1, 2 or 4 bytes) form a single
program unit that must not be interrupted.

Accus

a)ACCU-3-LH

Identifier of the data to be transferred,

permitted values: 0 =byte
1 =word

2 = double word

b) ACCU-3-LL

Current page no.,

permitted values: 0 to 255
c) ACCU-2-L

Source address of the page,
permitted values: 0 to 2047

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 216 to OB 218: Page Access

ACCU contents before reading:

— High word — Low word _
High byte Low byte High byte | Low byte
ACCU 4 gh by : y gn by : y
X ‘ X X ‘ X
Length ID . Page number
ACCU 3 « « 0: byte (8 bits) 0 to 255
' 1: word (16 bits)
2: double word (32 bits)
Address (relative to start of page)
ACCU 2 X « 0+1..2047 +1 for Iength ID 0 (byte)
' 0+2..2046 +2 forlength ID 1 (word)
0+ 4 ..2044 + 4 for length ID 2 (double word)
X —— data (8 bits)—
ACCU 1 X . data (16 bits) |
data (32 bit)
31 24‘ 23 16‘ 15 8‘7 0

Fig. 6-14 ACCU contents before calling OB 217

Result » If the OB reads from the pagaccessfully
- ACCU 1: (right-justified) contains the value
read (the remaining bits up to
maximum 32 are cleared),

- ACCU 3: remains unchanged,

ACCU-2-L: contains a value incremented by 1,
2 or 4 (depending on the length
of the data transferred),

- RLO: =1,

- the remaining bit and
word condition codes: are cleared.

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -85

OB 216 to OB 218: Page Access

« |If the OBcannotread from the page,
- all ACCUs: remain unchanged,
- RLO: =0,

- all other bit and word
condition cades: are cleared.

Possible errors » wrong length ID in ACCU-3-LH
» source address on the page is wrong or does not exist

» specified page number does not exist

6.21.3

OB 218: Reserving The special function organization block transfers the number of the

a Page CPU to a particular page, providing the contents of the memory
location addressed on this page s#e. As long as the CPU number
is entered in this location, the page is reserved for this CPU and
cannot be used by other CPUs.
Organization block OB 218 is used to synchronize data transfer and is
particularly important wherarge blocks of datamust be transmitted
as one unit. In the multiprocessor mode, no more than 4 bytes are
transferred per bus allocation. Reserving a page is therefore
advantageous.

Addressingthe pagereading and,if applicable, writing the slot
identifier is ongorogram unit that must not be interrupted.

Parameters Accus
a)ACCU-2-L L
Number of the page to be reserved,
permitted values: 0 to 255
b) ACCU-1-L

Destination address on the page,
permitted values: 0 ta2047

(The contents of ACCU 3 and 4 are irrelevant.)

CPU 928B Programming Guide
6 - 86 C79000-B8576-C898-01

OB 216 to OB 218: Page Access

Accu assignmentsefore calling OB 218:

High word Low word
High byte ‘ Low byte High byte ‘ Low byte
X Page number
ACCU 2 X X 0 t0 255

Address (relative to start of page)

ACCU 1 x X 0...2047
31 24 ! 23 16 ' 15 8 ‘ 7 0
Fig. 6-15 ACCU contents before calling OB 218
Result » Ifthe page is reservediccessfully:
- all ACCUs: remain unchanged

- the remaining bit and
condition cades: are cleared.

« |If the pagecannotbe reserved:
- all ACCUs: remain unchanged,
- RLO: =0,

- all other bit and word
condition codes: are cleared.

Possible errors incorrect length ID in ACCU-3-LH
» source address on the page is incorrect or does not exist

» specified page number does not exist.

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 87

OB 216 to OB 218: Page Access

6.21.4
Program Example

Task

You want to write data words 4 to 11 via the 923C coordinator from the
DB 45 of a CPU 928B to the DX 45 (data words 0 to 7) of a second
CPU 928B. You want to synchronize the sender and receiver (in the
multiprocessor mode) using OB 218.

Current page on the coordinator: no. 255
Coordination location on the page (reserved): addr. 53
Data transfer area of the page (reading and writing): addr. 54-69

STEP 5 operations in the SENDER:

'L KB255 Page number

L KB 53 Address of the coordination cell
:JU 0OB218 Transfer the slot ID to the cell on the page
:JC =MO001 If RLO = 1 (transfer successful),
jump to label
‘BEU Else block end
M001 :C DB 45 Open the source data block
L KY 2,255 2=length ID double word, page number
'L KB 54 Start address on page
‘ENT Write to ACCU 3
.LDD4 Data words 4 and 5 (= 4 bytes)
:JU OB 216 Transfer the 1st double word
: Increment address by 4 (ACCU-2-L = 58)
‘TAK Save the destination address
'L DD 6
JU OB 216 Transfer the 2nd double word
‘TAK
L DD 8
JU OB 216 Transfer the 3rd double word
‘TAK
L DD 10
JU OB 216 Transfer the 4th double word
L KY 0,255
L KB 53 Address with slot ID
‘ENT
L KB 0 ACCU1=0
JU OB 216 Clear slot ID, release data transfer area
‘BE

Continued on the next page

CPU 928B Programming Guide
6 - 88 C79000-B8576-C898-01

OB 216 to OB 218: Page Access

Continuation of the example:

STEP 5 operations in the RECEIVER:

CPU 928B Programming Guide
C79000-B8576-C898-01

L KB255 Page number
L KB 53 Coordination cell
:JU OB 218 Page reserved by 2nd CPU
:JC =MO002 If RLO =1, jump to label
‘BEU
M002 :CX DX45 Destination data block
'L KY 2,255
L KB 54
‘ENT Write to ACCU 3
L KBO Write to ACCU 2
:JU OB 217 Read 1st double word
: Increment the address by 4 (ACCU 2-L = 58)
T DDO Transfer ACCU 1 to data word 0 and 1
JU OB 217 Read 2nd double word
T DD 2
JU OB 217 Read 3rd double word
T DD 4
JU OB 217 Read 4th double word
T DD 6
L KY 0,255
L KB 53 Address with slot ID
‘ENT
L KB 0 ACCU1=0
JU OB 216 Clear slot ID, release data
: transfer area
‘BE

OB 220: Sign Extension

6.22 OB 220: Sign Extension

Application A sign extension is necessary to extend a negaéwait fixed point
number to a 32-bit fixed point number befperforming a fixed
point-floating point conversion (32 bits, operation FDG).

Function This special function extends the sign of a 16-bit fixed point number
in ACCU-1-L to the more significant word (ACCU-1-H):

. Ifbit2?®=0 (positive number), the more significant word is
loaded with KH = 0000.

. Ifbit2®=1 (negative number), the more significant word is
loaded with KH = FFFF.

Parameters ACCU-1-L

16-bit fixed point number

Result ACCU-1-H is loaded into ACO-1-L according to the sign of the
fixed-point number (see above).

Possible errors none

CPU 928B Programming Guide
6-90 C79000-B8576-C898-01

OB 221: Setting the Cycle Monitoring Time

6.23 OB 221: Setting the Cycle Monitoring Time

Function By calling this special function, you can modify the cycle monitoring
time and change the maximum permitted cycle time. As standard, the
cycle monitoring time is set to 150 ms. Along with this call, the timer
for the cycle time monitoring is restarted. The maximum permitted
cycle time for the cycle in which OB 221 is called, is extended by the
newly selected value, calculated from the time when the special
function call took place. The cycle monitoring time of all subsequent
cycles correspnds to the newly selected value (= the time value that
you transfer in ACCU 1).

Parameters ACCU 1
a)ACCU-1-L
new cycle time (in milliseconds),
permitted values 1 ms 3000 ms,

positive fixed point number (KF)

b) ACCU 1-H

ACCU-1-H must have thealue "0"

Result The new cycle monitoring time is set after correct processing of
OB 221.
Possible errors The cycle monitoring time you have specified is not within the range

1ms -13000 ms.

The function is not executed. The system program recognizes a
runtime error and call®B 31 The other reactions to the error depend
on how you have programmed OB 31 (see Section 5.6.2). If OB 31 is
not loaded, the CPU goes to the STOP mode.

In both cases, the error identifiea3AH is entered in ACCU-1-L.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-91

OB 222: Restarting the Cycle Monitoring Time

6.24 OB 222: Restarting the Cycle Monitoring Time
Function The special function OB 222 retriggers the cycle monitoring time, i.e.
the timer for the monitoring is restarted. After you call this special

function, the maximum permitted cycle time for the current cycle is
extended by the selected value from the time of the call.

Parameters none

Possible errors none

CPU 928B Programming Guide
6-92 C79000-B8576-C898-01

OB 223: Comparing Restart Types

6.25 OB 223: Comparing Restart Types

Function

Parameters

Result

Possible errors

Error IDs

CPU 928B Programming Guide
C79000-B8576-C898-01

If you call OB 223 in multiprocessor operation, the system checks
whether the restart types af CPUs involved are the same.

Note

OB 223must only be called wheall the CPUs have completed
their start up.

If start-up synchronization ksctive (DX 0) this is guaranteed by
calling OB 223 in the RUN mode.

If start-up synchronization iaactive this must be achieved by
other means, e.g. delayed OB 223 call.

none

Error messages in the event of deviating restart types

If the restart types of all the CPUs patrticipating in multiprocessor
mode are not the same, the CPU in which OB 223 is processed detects
a runtime errorOB 31is then called.

If OB 31 is not loaded, the CPU goes to the STOP mode with the LZF
error message. Its STOP LED flashes slowly. The other CPUs also go
to the STOP mode, their LEDs show a steady light.

When OB 31 is called and the CPU is in the STOP mode, the error ID
1A3BH is entered in ACCU-1-L.

OB 224: Transferring Blocks of Interprocessor

Communication Flags

6.26 OB 224: Transferring Blocks of Interprocessor
Communication Flags

Function

Parameters

Possible errors

The interprocessor communication (IPC) flagsteaesferred at the

end of the program cycle. In the single processor mode, the IPC flags
are transferred completely as a block of data to the memory on the
coordinator or the CP and/or from this memory to the flags of the
CPU. The S5 bus is always available.

In multiprocessor operation, on the other hand, each CPU can only
use the bus when it is allocated by the coordinator. Each time the CPU
has access to the bus, oalye byte is transferred. Following this, it is
once again the turn of the other CPUs. Sets of data that belong
together but that are distributed over several flag bytes enefdine
separated.

If you call organization block OB 224, you can transfer all the IPC

flags specified in DB 1 of the CPU as a block of data. As long as a
CPU is transferring IPC flags, it cannot be interrupted by another

CPU. Since the next CPU has to wait before it can transfer its data, the
cyclic program execution is delayed (cycle time!).

OB 224 ensures the consistency of the IPC flag information. It must
be called in the start-up program as follows:

e in all the CPUs involved in IPC flag transfer
and

» in each restart type being used.

none

none

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 226: Reading a Word from the System Program

6.27 OB 226: Reading a Word from the System Program

Function

Parameters

Result

Possible errors

CPU 928B Programming Guide
C79000-B8576-C898-01

The system program of the CPU is 128'% words long and is
located in a memory area thatyou cannot access with STEP 5
statements. Using OB 226, however, you iand individual data
words from this memory area.

Note
For using OB 226, please see the description of OB 227 and the
relevant programming example.

ACCU 1

Address of the system program memory location to be read
permitted values 0 to 0001 FFFF H

- ACCU-1-L: contains the word read from the system program
- ACCU-1-H: =0
- ACCU 2 contains the previous contents of ACCU 1

(i.e. the address); the previous contents of
ACCU 2 are lost.

none

OB 227: Reading the Checksum of the System Program

6.28 OB 227: Reading the Checksum of the System Program

Application

Function

Parameters

Result

Possible errors

During cyclic program execution, you can check the contents of the
system program as follows:

» read the individual memory cells of the system program from
address OH to address 1DFFFH using OB 226,

» add all the memory locations using fixed point addition
(operation +F), ignoring overflows,

» read the checksum using OB 227 and

« compare the total obtained by the fixed point addition with the
checksum read out by OB 227.

The special function organization block OB 227 loads the checksum
of the system program from the memory area of the system into
ACCU 1. The word it reads out corresponds to the total of all memory
cells of the system program from address OH to address 1DFFFH.

none

- ACCU 1: contains the read out checksum right-justified
(1 word); the remaining contents of ACCU 1
are cleared

- ACCU 2: contains the previous contents of ACCU 1,
the previous contents of ACCU 2 are lost.

none

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 227: Reading the Checksum of the System Program

Example

Checking the checksum of the system program

Function block FB 111 is programmed for checking the checksum of the
system program.

FB 111 generates the checksum of the contents of all system program
memory words and compares this checksum via OB 227 with the system
program checksum stored in the system memory. If the checksums are not
identical, the FB terminates in a STOP operation.

FW 250 = checksum
FD 252 = address counter

FB111
NAME: CHECKSUM

'L KH 0000

T FwW 250 clear checksum flags

T FD 252 clear address counter

MO001 ::]U OB 222 restart the cycle monitoring time

L FD 252 load the address of the memory cell to be read
JU OB 226 read word

L FW 250 load the checksum flags

+F add

T FwW 250 store the checksum flags

;L FD 252 increment the address counter

L KF+1

+D add double word

TF D 252
':L DH 0001E000 if address counter is not equal to "LEOOOH’
>< D

:JC =MO001 jump to label M0OO1

;JU OB 227 read checksum if address counter equals *1EQ00H’,
;L FW 250 load checksum flags

I=F if equal, block end

‘BEC

;STP if not equal, stop operation

‘BE

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -97

OB 228: Reading Status Information of a Program Processing Level

6.29 OB 228: Reading Status Information of a Program Processing Level

Function If a particular event occurs, the system program calls the
corresponding program processing level. The program processing
level is then "activated”.

Using organization block OB 228, you can find out whethspeific
program processing level is active or not at a particular time. Transfer
the number of the program processing level whose status you want to
scan to ACCU 1. (The numbers are those entered under LEVEL in the
ISTACK).

When the block is called, it stores the status information of the
specified program level in AGG-1-L. By evaluating this

information, you can make your program execution dependent on the
status of another program processing level.

Parameters ACCU-1-L
Number of the program processing level
(see ISTACK, LEVEL)
possible values (hexadecimal): see following table

Level no. in | Level name Level no.in | Level name
ACCU-1-L ACCU-1-L
02 COLD RESTART 26 Not used
04 CYCLE 28 Not used
06 TIME INTERRUPT 5 sec 2A Not used
08 TIME INTERRUPT 2 sec 2C Abort
O0A TIME INTERRUPT 1 sec 2E Interface error
0oC TIME INTERRUPT 500 ms 30 Collision of time interrupt
OE TIME INTERRUPT 200 ms 32 Controller error
10 TIME INTERRUPT 100 ms 34 Cycle error
12 TIME INTERRUPT 50 ms 36 Not used
14 TIME INTERRUPT 20 ms 38 Operation code error
16 TIME INTERRUPT 10ms 3A Runtime error
18 TIMED JOB 3C Addressing error
1A Not used 3E Timeout
1C CONTROLLER INTERRUPT 40 Not used
1E Not used 42 Not used
20 Not used 44 MANUAL
22 Not used WARM RESTART
24 PROCESS INTERRUPT 46 AUTOMATIC
WARM RESTART

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 228: Reading Status Information of a Program Processing Level

Result - ACCU-1-L: contains the status information:
=0 - Program processing level has not been
called
0 - Program processing level has been
activated

- ACCU-2-L: contains the previous contents of ACCU-1-L;
the previous contents of ACCU-2-L are lost

Possible errors none
Example
You want to ignore a timeout during the COLD RESTART, however, not in

the remaining program processing levels.

Call special function organization block OB 228 at the beginning of OB

23 to check whether program processing level COLD RESTART (number 02) is
active or not when a QVZ (timeout) occurs. You can make the reactions to

the error dependent on the status information you obtain as follows:

ACCU 1=0: COLD RESTART not active QWVZ has not occurred in
COLD RESTAR, but in another
program processing level
Error handling program must be
executed

ACCU1 =z0: COLD RESTART activated QVZ has occurred in COLD RESTART
QVZ can be ignored

Using OB 228, you can differentiate between various error situations.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-99

OB 230 to 237: Functions for Standard Function Blocks

6.30 OB 230 to 237: Functions for Standard Function Blocks

Data handling blocks

Assignment aid

Using the handling blocks

6 - 100

The special function organization blocks OB 230 to OB 237 are
reserved for data handling functions and can only be called in the

standard function blocks FB 120 to FB 127.

These standard function blocks, the data handling blocks known
simply as "handling blocks", control the data exchange via the page

area in the single and multiprocessor modes. They are used when data

or parameters and control information are transferred to or from the
communications processors (CPs).

You can use the table below to find out which handling blocks call the

special function organization blocks OB 230 to OB 237.

Standard Spedal function Handling
function block Organization block block

FB 120 SF-OB 230 SEND
FB 121 SF-OB 231 RECEIVE
FB 122 SF-OB 232 FETCH
FB 123 SF-OB 233 CONTROL
FB 124 SF-OB 234 RESET
FB 125 SF-OB 235 SYNCHRON
FB 126 SF-OB 236 SEND ALL
FB 127 SF-OB 237 RECEIVE ALL

The use of the handling blocks, that can be ordered as a software
product on diskette, is deribed in the manual "S5 135U

programmable controller, handling blocks for the R processor and
CPU 928/928B" /5/ in Chapter 13).

CPU 928B Programming Guide

C79000-B8576-C898-01

OB 240 to 242: Special Functions for Shift Registers

6.31 OB 240 to 242: Special Functions for Shift Registers

6.31.1
Shift Registers This introduction tells you what you can use shift registers for and the
points to note in doing so.

Application You can use shift registers, e.g. in a manufacturing process, to
program a materials follow-up on the programmable controller. On
the CPU 928B, you have a maximum of 64 software shift registers
available.

You can write data to the shift register and read data from it. This is
done using "pointers". Pointers are flag bytes that contain the contents
of individual cells of a shift register.

Structure A software shift register consists of rows of 8-bit wide memory cells
and can be between 2 and 256 memory cells long.

Location in the DB-RAM The data of a shift register are located in the data block RAM of the
CPU. Each shift register is assigned to a specific data block and also
has the same number as the data block (permitted: 192 to 255). If you
set up a shift register with the number 210, the corresponding data is
in data block DB 210.

The DB-RAM has a capacity of 46 Kbytes (address KH 8000 to KH
DD7F). This area contains the data blocks (starting fron8R®0 in
ascending order) copied using OB 254 and 255 and the shift registers
you have set up (starting from KH DD7F in descending order). If the
memory area of the DB RAM is not sufficient for copying DBs or
setting up shift registers, the CPU recognizes a runtime error and calls
OB 31. The reactions to the error depend on how you have
programmed OB 31 (see Section 5.6.2).

The following schematics illustrate the principle of a software shift
register with three pointers and twelve memory cells.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-101

OB 240 to 242: Special Functions for Shift Registers

Pointer 1 Pointer 2 Pointer 3

Flag bit 0
Flag bit 1
Flag bit 2
Flag bit 3
Flag bit 4
Flag bit 5
Flag bit 6
Flag bit 7

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Fig. 6-16 Schematic showing the principle of a shift register with 3 pointers and 12 memory cells

Initializing When you initialize a shift register (see Section 6.31.2), you specify
the number of the flag byte for pointer 1 (= base pointer). This is then
set permanently on the first memory cell of the shift register. You then
position all the other pointers relative to the base pointer (you can use
between one and a maximum of six pointers per shift register).

Shifting When you shift a shift register (like a hardware shift register), the total
contents of all the shift register cells are transferred in bytes from one
memory cell to the next (see Fig. 6-17). Each time the shift register
function is called, the information is shifted one memory cell
(corresponds to one clock pulse), and the pointers are supplied with
new contents. As shown by the arrows, the information is shifted
through the complete shift register to the last memory cell from where
it returns to memory cell 1 (after 12 clock pulses for the shift register
illustrated in the schematic).

CPU 928B Programming Guide
6-102 C79000-B8576-C898-01

OB 240 to 242: Special Functions for Shift Registers

Example

Figures 6-17 and 6-18 illustrate the shifting of information within a
shift register with three pointers and twelve memory cells.

Before the special function is called, certain bits are set in the
pointers (flags) to identify the pointer information, as follows:

Set flag bit O of pointer 1 SF0.0
Set flag bit 3 of pointer 2 SF13
Set flag bit 2 of pointer 3 SF22
The shift register function is then called :JU OB 241
Pointer 1 Pointer 2 Pointer 3
1 0 0 Flag bit 0
0 0 0 Flag bit 1
0 0 1 Flag bit 2
o 0 1 0 Flag bit 3
) 0 0 Flag bit 4
0 0 0 Flag bit 5
0 0 0 Flag bit 6
0 0 0 Flag bit 7
3 3 Y
1 0 0 0 1 0 0 0 1 Bit 0
1 0 0 0 1 1 0 0 0 Bit 1
1 0 0 0 1 0 0 0 1 Bit 2
1 0 0 0 1 1 0 0 0 Bit 3
0 1 0 0 1 0 0 0 1 Bit 4
0 1 0 0 1 1 0 0 0 Bit 5
0 1 0 0 1 0 0 0 1 Bit 6
0 1 0 0 1 1 0 0 0 Bit 7
1 2 3 4 5 6 7 8 9 10 11 12
Fig. 6-17 Schematic showing the principle of a shift register with 3 pointers and 12 memory cells before the

first clock pulse

After calling the special function, the 8-bit wide information of the
memory cells is shifted by one cell, as shown below:

Pointer 1 Pointer 2 Pointer 3
1 1 0 Flag bit 0
0 1 0 Flag bit 1
1 1 0 Flag bit 2
o 0 1 0 Flag bit 3
R 1 0 Flag bit 4
0 1 0 Flag bit 5
1 1 0 Flag bit 6
0 1 0 Flag bit 7
v v v |
1 1 0 0 0 0 0 0 0 Bit 0
0 1 0 0 0 0 1 0 0 Bit 1
0 1 0 0 0 0 0 1 0 Bit 2
0 1 0 0 0 1 1 0 0 Bit 3
0 0 1 0 0 0 0 0 0 Bit 4
0 0 1 0 0 0 1 0 0 Bit 5
0 0 1 0 0 0 0 0 0 Bit 6
0 0 1 0 0 0 1 0 0 Bit 7
1 2 3 4 5 6 7 8 9 10 11 12
Fig. 6-18 Schematic showing the principle of a shift register with 3 pointers and 12 memory cells after the

first clock pulse

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01 6-103

OB 240 to 242: Special Functions for Shift Registers

Continuation of the example:

You can now evaluate the information in the pointers as follows:
LFYO
etc.

Flag bits 0, 3 and 2 can be scanned at the base pointer: in this way,
you can evaluate all the information from the entries in all pointers at
the base pointer (in the example, this requires twelve clock pulses).

Organization blocks If you want to use a shift register, there are three special function
organization blocks available:

» OB 24G

This funcitoninitializes a shift register.

« OB 241

This functionprocessesa shift register.

» OB 242

This functiondeletesa shift register.

CPU 928B Programming Guide
6 -104 C79000-B8576-C898-01

OB 240 to 242: Special Functions for Shift Registers

6.31.2

OB 240: Initializing Shift

Registers

Application Before processing a shift register, you must first initialize it. This is
done by calling OB 240 once (ideally in a restart organization block).
The parameters that OB 240 requires to create a shift register are
contained in a data block with the number of the shift register to be
initialized. DB numbers between 192 and 255 are permitted.

Function A specific memory area at the end of the DB-RAM is reserved and
initialized with the information from the opened data block.

Parameters opened data block

possible values: DB no. 192 to 255 m

The data block has a fixed structure which you must not change. It
can have a maximum length of 9 data words (DW 0 through DW 8).

0 DW 0
Shift register length (bytes) L DW 1
Number of the 1st flag byte/base pointer | DW 2
Interval n , DW 3
Interval n 3 DW 4
Interval n DW 5
Interval n ¢ DW 6
Interval n g DW 7
0 DW 8 or last data word
Fig. 6-19 Structure of the data block for initializing a shift register

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 105

OB 240 to 242: Special Functions for Shift Registers

The individual data words must be assigned as follows:
Data word O

Must always contain the value 0.

Data word 1

The shift register length L is the number (in bytes) of memory
locations of the shift register. It can be within the range between
2<L <256.

Data word 2

The number of the first flag byte determines the base pointer and with
it the block of flags assigned to the pointers. The block of flags
contains the total number of pointers you have selected. You select
pointers by making entries in data words DW 3 to maximum DW 7,
using one data word per pointer.

If, for example, you want to set up two further pointers, you then have
a total of three pointers.

Make sure that you have enough flags available for all pointers up to
the end of the block of flags.

Data word 3 to maximum 7

You specify the other pointers indirectly. They are defined by their
distance (shift register cells = number of bytes) from the base pointer.

n2 = distance from pointer 2 to base pointer
n3 = distance from pointer 3 to base pointer
ng = distance from pointer 4 to base pointer

etc. (1 to maximum 5 entries)

Last data word (DW 4 to maximum DW 8)
(in the example DW 8). This must always contain the value zero.

If you only select two additional pointers, the "0" is in data word
DW 5 etc.

All the information is specified as fixed point numbers.

CPU 928B Programming Guide
6 - 106 C79000-B8576-C898-01

OB 240 to 242: Special Functions for Shift Registers

Note
Thenumber of pointers (6 including the base pointer) must not
exceed the length of the shift register.

Thedistanceof a pointer to the base pointer must not exceed the
length of the shift register.

Data wordDW 0 and thedata word after the last pointer
distancemust always contai.

The data block must be opkafore OB 240 is called.
The data block must havenamber in the range

DB 192to
DB 255.

Memory requirements n = shift register length/2 + 8 data words

are required for every shift register, i.e. the length of the DB RAM is m

reduced by n data words. The data block RAM end address is shifted
to lower addresses. If you attempt to initialize a shift register that
already exists, the area already assigned will be initialized again
providing the new and old shift registers both have the same length.
Otherwise the old area will be declared invalid and a new area will be
opened.

Possible errors illegal data block number (<192)
e not enough memory space in the DB RAM
» formal error in the structure of the data block
« illegal length specified for the shift register

 errors in the pointer parameters

In the event of an error, the CPU recognizes a runtime error and calls
OB 31 What happens then depends on how you have programmed
OB 31 (see Section 5.6.2). If OB 31 is not loaded, the CPU goes to the
stop mode.

In both cases, error IDs are entered in ACCU-1-L that describe the
error in greater detail.

CPU 928B Programming Guide
C79000-B8576-C898-01 6 - 107

OB 240 to 242: Special Functions for Shift Registers

6.31.3
OB 241: Processing The special function organization block OB 241 processes a shift
Shift Registers register providing it has been initialized by OB 240.

In the CPU 928B, you can call a maximum of 64 shift registers.

Application Before you call OB 241, certain flag bits are usually set/reset in the
pointers.
Each time OB 241 is called, the information is shifted byte by byte
from one memory cell to the next higher memory cell. The pointers
are then supplied with new contents. By repeatedly calling OB 241,
the information can be shifted through the complete shift register to
the last memory cell. From here, it is then transferred to memory
cell 1.

Function Each time OB 241 is processed, the shift register addressed via
ACCU-1-L is shifted one position to the right.

Parameters ACCU-1-L

Number of the shift register to be processed,
permissible values: 192 to 255

Result After you call OB 241, the pointers (maximum 6 per shift register)
that can be positioned as required with the exception of the base
pointers contain the information of the preceding memory cell. You
can then evaluate this information.

Possible errors « illegal shift register numberin ACCU 1
« shift register not initialized.

In the event of an error, the CPU recognizes a runtime error and calls
OB 31 What happens then depends on how you have programmed
OB 31 (see Section 5.6.2). If OB 31 is not loaded, the CPU goes to the
stop mode.

In both cases, error IDs are entered in ACCU-1-L that describe the
error in greater detail.

CPU 928B Programming Guide
6 -108 C79000-B8576-C898-01

OB 240 to 242: Special Functions for Shift Registers

6.31.4
OB 242: Deleting a
Shift Register

Function With this function, you can delete a shift register in the data block
RAM. The entry in the DB 0 address list is cleared and the shift
register is declared invalid in the DB RAM (remember: shift registers
still occupy memory space after they have been deleted).

Parameters ACCU-1-L

Number of the shift register to be deleted,
possible values: 192 to 255

Result After you call OB 242, the shift register is deleted and can no longer
be used; if you want to work with it again, it must be reinitialized.

Possible errors « illegal shift register numberin ACCU 1

« shift register not initialized

In the event of an error, the CPU recognizes a runtime error and calls
OB 31 What happens then depends on how you programmed OB 31
(see Section 5.6.2). If OB 31 is not loaded, the CPU goes to the stop
mode.

In both cases, error IDs are entered in ACCU-1-L that describe the
error in greater detail.

CPU 928B Programming Guide
C79000-B8576-C898-01 6 -109

OB 250/251: Closed-Loop Control/ PID Algorithm

6.32 OB 250/251: Closed-Loop Control/ PID Algorithm

You can work with one or more PID controllers in the CPU 928B of
the S5-135U. Each controller must be initialized in the restart
organization block. A data block is used to transfer the parameters.
The actual control algorithm is integrated in the system program and
you can simply call it as an organization block. A data block is used
as the data interface between the control algorithm and the user

program.
6.32.1
Functional Description of
the PID Controller
z Manual input: Input of YH when S3 set to O
Input of dYH when S3 set to 1
r 0 - - 1
| |
| |
| 0 |
| \ \ |
| oNsa 1N |
R
\ O— Auto \
|
w |
‘ dy 1 UL |
X ‘ PID - dYA(S3setto 1)
algorithm P > |
| 0 XW e S3 | YA (S3 set to 0)
| NE— Y LL
| S |
Xz+—— s1 |
1
| |
I R A N D |
K R TI TD

Fig. 6-20 Block diagram of the PID controller

CPU 928B Programming Guide
6-110 C79000-B8576-C898-01

OB 250/251: Closed-Loop Control/ PID Algorithm

Index k

STEU control word

PID algorithm

Differentiator

Disturbance compensation

CPU 928B Programming Guide
C79000-B8576-C898-01

k times sampling

Switch Setting Effect
S1
CONTROL 0 The system error XWis supplied to
BIT1 the derivative unit.
! The derivative unit can be supplied
with another signal via XZ.
S2
CONTROL 0 Manual operation
BITO
1 Automatic
S3
CONTROL 0 Position algorithm
BIT 3
1 Velocity algorithm
S4
CONTROL 0 With feedforward control
BIT5
1 Without feedforward control

You obtain a function corresponding to the switch settings of the

block diagram by assigning parameters to the PID controller, i.e. by

setting the control bits in the control word STEU. The continuous
controller is intended for fast control systems, e.g. in process
engineering for pressure, temperature or flow rate control.

The controller itself is based on a PID algorithm. Its output signal can
either be output as a manipulated variable (position algorithm) or as a

change of manipulated variable (velocity algorithm).
You can disable the individual P, | and D actions by setting their

parameters R, Tl and TD to zero. This allows you to implement any

controller structure you require, e.g. PI, PID or PD controllers.

You can supply the derivative unit either with the system error XW or
a disturbance or the inverted actual value -x can be supplied via the

XZ input.

If you require a precontrol of the actuator without dynamic behaviour
to compensate for the influence of a disturbance, then a disturbance Z
measured in the process can be fed forward to the control algorithm.
In manual operation, this is replaced by the preselected manipulated

variable YM.

6-111

OB 250/251: Closed-Loop Control/ PID Algorithm

Inverted control direction

Limiting the control
information

6.32.2
PID Algorithm

6-112

If you require an inverted control direction, preset a negative K value.

If the control information (dY or Y) reaches a limit, the | action is
automatically disabled in order to prevent deterioration of the
controller response.

You can supply the control program with preset fixed values or with
adaptive (dynamic) parameters (K, R, Tl, TD). These are input via the
memory cells assigned to the individual parameters.

The PID controller is based on a velocity algorithm according to
which the control increment d¥s calculated at time t =k * TA,
according to the following formula:

TA

AYieK [(KW= XWic1) R+ 5 (XWi+ XWie) +
107V O
> Sﬁ (XUk — 2XUk-1 + XUk-2) + de—1B]

=K(dPWR + d + dR)

dXXXk: change in variable XXX at time t.

U can be either W or Z, depending on whether XW or XZ is supplied
to the derivative unit. The following applies:

If XW k is supplied: If XZ is supplied:
PWik = Wk - Xk

PWk = XWk - XWk-1 PZx = XZk - XZk-1
QWi = PWk - PWk-1 QZx = P4 - PZc-1

QWk = XWk - 2XWk-1 + XWk-2 QZk = XZk - 2XZk-1 + XZk-2

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 250/251: Closed-Loop Control/ PID Algorithm

dPWk = (XWk - XWk-1)R

_ TA
dic =TIOXWk Tl=y

1 TV
dDk =5 (TDOQUc+dDk) TD=p

If you require the manipulated variable at the controller output at
time k, it is calculated according to the following formula:

m=k
Yk = Z de

m=0

With most controller structures, it is assumed that R = 1 if a P action
is required.

Using the variable R, you can adjust the proportional action of the
PID controller.

Data blocks for the PID Controller-specific data are input using a transfer data block (see
controller Sections 6.32.3 and 6.32.4) for initialization and processing of the PID
controller.

You must specify these data in the transfer data block x:
K,R, Tl, TD, W, STEU, YH, ULV, LLV
The transfer data block must contain data words 0 to 48, i.e. itis 49

data words long. The following table explains the significance of
these data words.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-113

OB 250/251: Closed-Loop Control/ PID Algorithm

Structure of the transfer data

block

Table 6-10 Transferring the data block for PID control

Addr. Name | 1/O | Nume- PG Remarks
in DB rical format
D format <)
2)
DWO — — — — Reserve
DD 1 K I FLP KG Proportional cooefficient
K >0: Positive control direction, i.e.
change of actual value and
manipulated variable in same direction
K <0: Negative control direction, floating point
number range
DD 3 R I FLP KG R parameter, usually equals 1 for controllers with P
action
DD 5 TI I FLP KG TI=TA/TN
DD 7 TD I FLP KG TD =TVITA
DD 9 Wk I FLP KG Setpoint input here, when control bit 6 = 1,
otherwise in word no. 19 (Wk <1)
DW11 | STEU I FLP KM Control word
DD 12 | YHk I FLP KG Manual input here, when control bit 6 = 1; otherwise
in word no. 18 (-kKYHk <1)
For velocityalgoiithms, you must specifiy amipulated
variable increments here
DD14 | ULV I FLP KG Upper limit value 4)
-1< ULV £ 1 (YA may);
NLLV <ULV I
DD 16 | LLV I FLP KG Lower limit value 4)
-1<LLV <1 (YAK min)
DW18 | YHk I NF KF Manual input here, when control bit 6 = 0
(-1 < YH < 1). For velocityalgotithms, you must
specify nanipulated variable increments here
DW19 Wk I NF KF Setpoint input here, when control bit 6 = 0
(-lsWk<1)
DW 20 | MERK I BP KM Bit 0 = 1: positive limit exceeded;
Bit 1 = 1: below negative limit
DW 21 Xk I NF KF Actual value input for control bit 7 =0
(-1 <Xk <1)
DD 22 Xk I FLP KG Actual value input for control bit 7 = 1
(-1 <Xk <1)
DW 24 Z I NF KF Disturbance (-kZk <1)
DD 25 Z I FLP KG Disturbance input here, if
control bit 7 = 1 (-kZk <1)

6-114

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 250/251: Closed-Loop Control/ PID Algorithm

Addr. Name | I/O | Nume- PG Remarks
in DB rical format
D format 4
2)

Table 6-10 continued:

DD 27 Zk-1 | FLP KG Historical value of the disturbance

DW 29| XZ I NF KF Value supplied to the derivative unit via input XZ
(-1 <XZk <1); input here, if control bit 7 = 0

DD 30 | XZ FLP KG XZ input here, if control bit 7 =1
(-1=XZk <1)

DD 32 | XZk-1 | FLP KG Historical value of XZk

DD 34 | PZ-1 I FLP KG XZk-1 - XZk-2

DD 36 | dDx-1 — FLP KG Derivative action

DD 38 | XWk-1 | — FLP KG Historical value of the system error

DD 40 | PWk1 | — FLP KG XWKk-1 - XWk-2

DW 42 — — — — Reserve

DD 44 | Yk1 — FLP KG Historical value of the calculated manipulated
variable Yk-1 or d¥-1 before the limiter

DD 46 | YAk FLP KG Output variable

DW 48 | YAk NF KF Output variable UL\KYA <LLV

D= input, Q = output
2 FLP = floating point number, NF = normalized fixed point number (see page 6 - 103), BP = bit pattern
3) Suggested format (KH, KM also permitted)

4 In normalized fixed point format, the upper and lower limit value must be entered according to the following formulas:

DD 14 = BGOG: BGOG
val fi i =
alue as fixed point number 32767
. . B
DD 16 = BGUG: Value as fixed point number 3267%(73

CPU 928B Programming Guide
C79000-B8576-C898-01 6-115

OB 250/251: Closed-Loop Control/ PID Algorithm

Example of limit values
- Limit values
Upper limit value = 0.1

Lower limit value =-0.1

- Entries in the DB:

DD 14: *1000 000 +00

DD 16: -1000 000 +00

- Output variable is limited:

DW 48. +-3276
DD 15: +-0.1
Note:

For limit values outside 1, the output variable is limited in floating

point format (DD 46).

6-116

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 250/251: Closed-Loop Control/ PID Algorithm

Bit assignment of the control
word STEU (data word
DW 11 in the transfer DB)

Table 6-11 Control word in the transfer DB

DWwW 11 Name Meaning
Bit no.
11.0 AUTO =1. Automatic operation
=0: Manual operation
11.1 XZ _INP =1: Another vaable (not XW), is supplied to the derivate unit
by the input
==: XWk is supplied to the derivate unit. The XZ input
is ighored.
11.2 DIS CTR =1. When the controller is called (OB 251) all variables (DW 20 to

DW 48) except K, R, Tl, TD, BGOG, BGUG, STEU, ¥HV,
Zk and %-1 are cleared once in the DB RAM. The controller is
disabled. The historical value of the disturbance is
updated.

=0: control

11.3 VELOC =1. Velocity algorithm
=0: Position algorithm

11.4Y | MANTYPE | =1: IfVELOC =0 (position algorithm) the last manipulated variable
to be output is retained.
If VELOC is 1 (velocity algorithm) the control increment
dYk =0 is set.

=0: If VELOC =0, then after switching to manual operation, the
value of the manipulated variable output YA is brought to the
selected manual value exponentially in four sampling steps.
Following this, other manual variables are accepted immediately
at the controller output.
If VELOC =1, the manual values are switched through to the
controller ouptut immediately. In manual operation, the limits
are effective. In manual operation the following variables are
updated:

Xk, SWk-1 and PW-1
XZk, XZk-1 and P4-1, if control bit 1 =1
Zk and %-1, if control bit5=0

The variable dR1 is set to = 0. The algorithm is not calculated.

115 NO_Z =1: no feedforward control
=0: with feedforward control
11.6 PGDG =1. W, YHk input as floating point number

=0: Input as normalized fixed point number

11.7 VAR _FLP | =1: Theariables X, XZk and 4 are input as floating point numbers
=0: Input of the variables as normalized fixed point numbers

CPU 928B Programming Guide
C79000-B8576-C898-01 6-117

OB 250/251: Closed-Loop Control/ PID Algorithm

DW 11
Bit no.

Name

Meaning

Table 6-11 continued:

11.8 BUMP =1: No bumpless changeover from manual to automatic
=0: Bumpless changeover from manual to automatic

119 to 11.15 Irrelevant
6.32.3
OB 250: Initializing the
PID Algorithm
Function OB 250 initializes the PID algorithm and is called in the restart

OBs 20/21/22.

Parameters The parameters required for the initialization are contained in the

Possible errors

6-118

transfer data block (DB x).

Note

The transfer data block must be open before OB 250 is called.

For data transfer, each controller requires its own DBs264).

From this, the system program automatically generates a further

DB x + 1 in the data block RAM, that the controller uses as a data
field in cyclic operation. This means that the corresponding DB
numbers must still be available. Data blocks DB x + 1 represent the
data interfaces between the controller and the user or peripheral I/Os.

Internally, OB 250 uses OB 254 or OB 255 (duplication of data
blocks). In the event of an error, the CPU recognizes a runtime error
and calls OB 3L1. If this is not programmed, the CPU goes to the stop
mode. The error IDs entered in ACCU 1 then refer to2586.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 250/251: Closed-Loop Control/ PID Algorithm

6.32.4
OB 251: Processing the
PID Algorithm

Application

Call

CPU 928B Programming Guide
C79000-B8576-C898-01

Note

If DB x + 1 is not kept free during the initialization, it will be

used as a controller data field without any warning if its length i
identical to that of a controller DB (49 data words); data words 20
through 48 are cleared. Otherwise the CPU goes to the stop mode.

Instead of DB data blocks, you can also use DX data blocks.
Initialization is the same as with DB data blocks.

OB 251 is called during cyclic program execution and processes the
PID algorithm.

The controller should be called after the sampling time has elapsed.
Keep to the following order:

Step Action

1 Call data block DB x + 1

2 Load input data X XZk, Zk and YH or a subset of
these

3 Convert input data to the correct format and transfer it
toDBx+1

4 Call OB 251 (process PID controller)

5 Load the output data Yi&rom DB x + 1

6 Convert the data and transfer to the process 1/0Os

6-119

OB 250/251: Closed-Loop Control/ PID Algorithm

Format of controller inputs
and outputs

Inputs

Input as normalized fixed
point numbers

Output

6-120

Internally, the PID control algorithm uses the floating point format for
numerical representation and can be supplied with floating point
values. You can also supply the PID controller algorithm using the
normalized fixed point format (see bits 6 and 7 in the control word
STEU). In this case, the controller automatically converts the words to
the floating point format with every call.

Adaptation of words from the input and output modules in the STEP 5
program is faster if you use the normalized fixed point format (see
table at the end of this section).

You can input W, YH, X, Z and XZ as floating point or normalized
fixed point numbers. Different memory cells are reserved for each
variable in the data transfer block.

(For an explanation of the normalized fixed point numbers, see the
table at the end of this section).

Note

While keeping within the nominal input ranges of the analog
input modules, do not forget that the bit pattern for a certain input
value is different from when you use the full input range. This is
particularly important when you adjust the setpoint. Otherwise, |it
is possible that a setpoint input at the PG cannot be reached
although the actual value is far higher than the desired value.

If your analog-to-digital converter supplies negative numbers as a
number and sign, the 2’'s complement of this number must be formed
before it is transferred to the controller DB. Following this, the binary
digit 15 must be set to 1.

If the number -0 is possible as a number and sign in the following
format:

1000000000000000

in your analog-to-digital converter, the 2’'s complement must not be
formed. The number must be transferred to the controller DB as +0:

0000000000000000

The controller output YA exists in the DB as a normalized fixed point
number and a floating point number. Taking into account the input
and output modules used (analog-to-digital converter,
digital-to-analog converter) the format must be converted for
normalized fixed point inputs and outputs before and after the
controller is called in the STEP 5 user program before values are
transferred to or from the controller DB.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 250/251: Closed-Loop Control/ PID Algorithm

General notes

Using BUMP If BUMP (control bit 8) is set to zero, the changeover from manual to
automatic operation is bumpless, i.e. the system error, however large
it may be, is corrected only by the | action. If, however, you have
selected TI = TA/TN = 0 (P or PD controller) the system error does
not cause a change of the manipulated variable when the changeover
takes place.

You can prevent this by setting BUMP = 1. This means that a system
error is corrected quickly when there is a manual-to- automatic
changeover, irrespective of Tl = 0. The manipulated variable jump
that results corregmds to the value of the system error, which means
that it is not arbitary in the sense of a dishance of the controller

operation.
Displaying MERK, bits 0 Bits 0 and 1 of MERK can be displayed if required to show that the
and 1 manipulated variable (for velocity algorithm, the control increment)

lies between the upper and lower limits. Since these bits are evaluated

by the algorithm for disabling the | action, you cannot overwrite them. m

Note
You must notreload the controller data blocks DB x + 1 during
cyclic operation.

Cascade control If two or more controllers are cascaded, remember the following
points:

» If the cascade is split, either all the controllers have to change to
manual operation simultaneously to prevent any controller drift
due to the | action or at least the controller of the outer loop must
be operated manually to ensure that the last manipulated variable
corresponding to the setpoint of the inner loop is retained or
changed to a safe value.

« If you want to close the cascade, both loops should operate at the
same time in the automatic mode or at least the inner loop to
ensure that the manipulated variable of the outer loop is taken as
the setpoint.

Switching to manual mode If the control system is disconnected from the controller and directly
adjusted at the actuator following the changeover to manual operation,
the manipulated variable obtained must be supplied to the controller
via the manual input. This ensures that when you change from manual
to automatic operation, the controller output will correspond to the
manipulated variable set during manual operation. In the case of the
velocity algorithm, this will be the change in the manipulated variable.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-121

OB 250/251: Closed-Loop Control/ PID Algorithm

Controller parameters

P controller

Xin

The parameter for a P controller is K. This is the quotient of the
output and input value: K =4 Xin.

X out

t=0

Pl controller

Xin

The parameters for a Pl controller are the proportional cooefficient K
and the reset time TN. The proportional cooefficient K is the quotient
of the output and input value and determines the P action. The reset
time TN is the time required to resud to achieve the same change in
the manipulated variable due to the | action as occurs due to the P
action.

X out

s
s
/

PD controller

Xin

t

0

t TN t=0 t

The parameters for a PD controller are the proportional cooefficient K
(see above) and the derivative time constant TV. The derivative time
constant is the time a P controller would require at a constant rate of
change of the input variable to bring about the same change in the
output variable that is brought about immediately by the D action of a
PD controller. To determine the derivative time constant, a linear
change in the input variable is assumed and not a jump function.

X out

6-122

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 250/251: Closed-Loop Control/ PID Algorithm

PID controller

Parameter changes

Abbreviations for PID
controllers

CPU 928B Programming Guide
C79000-B8576-C898-01

The parameters for a PID controller are the proportional cooefficient
K, the reset time TN and the derivative time constant TV. These in
turn determine the P, | and D actions.

The P action of the manipulated variable is obtained based on the
following formula:

Paction= KP (XWk - XWi-1)

If KP or R are changed during automatic operation, this only affects
subsequent changes of the system errokXWe current value of the
manipulated variable is not affected by the parameter change. This
response allows for a bumpless change.

If, however, you do not want this response, you can eliminate it using
the following calculation, (example of a KP change). This calculation
is only made once for each parameter change:

Yk-1= Yk-1 + XWk-1(KPnew - KPold)

If you use the following program in the case of a parameter change,
the controller responds like an analog controller.

'L KPnew load KRhew
L KPold load KRyd
-G
L DD38 XWi-1
XG
L DD44 Yk-1
+G
T DD44 = Yk-1

dYk Calculated control increment

dzx Disturbance increment

FLP Floating point representation

k k * sampling

K Proportional cooefficient

LL Lower limit (limiter)

NF Normalized fixed point representation

R R parameter

TA Sampling time

TD TVITA

T TA/TN

t Sampling instant = kTA

TN Reset time

TV Derivative time constant

UL Upper limit (limiter)

Wk Setpoint

Xk Actual value

XWk System error

Yk Calculated manipulated variable

YAk Value of manipulated variable (control increment or
manipulated variable)

Zk Disturbance

6-123

OB 250/251: Closed-Loop Control/ PID Algorithm

Normalized fixed point One word is required to represent a normalized fixed point number in

numbers a data block. The following example illustrates the difference between
a fraction represented decimally, in binary and using the KF format on
the programmer.

Table 6-12 Fraction

Fraction in Fixed point
number
Decimal Binary representation
representation

-0.999... . 1000000000000001 -32767
-0.75 1010000000000000 -24576

-0.5 1100000000000000 -16384
-0.25 1110000000000000 -8192

0 0000000000000000 0

+0.25 0010000000000000 + 8192

+0.5 0100000000000000 +16384
+0.75 0110000000000000 +24576
+0.999... . 011111111111171211 +32767

Negative normalized fixed point numbers in a binary representation
are obtained by forming the 2’s complement of the positive
normalized fixed point number.

Normalized fixed point numbers (NF) can be converted to the values
represented in the programmer (KF) as follows:

NF * 32767 = KF

where -1 < NF <+1 and 32767 <KF < +32767

CPU 928B Programming Guide
6-124 C79000-B8576-C898-01

OB 254, OB 255: Transferring a Data Block to the DB RAM

6.33 OB 254, OB 255: Transferring a Data Block to the DB RAM

Special function organization blocks OB 254 and OB 255 allow you

to transfer data blocks from the user memory to the DB RAM (data
block memory) of the CPU. The special functions OB 254 and 255 are
identical;OB 254is used foD X data blocks an®B 255for DB data

blocks.

Application Shifting or duplicating a data block

Function

Shifting Shifting a data block from the user memory to the DB RAM
A data block is shifted from the user memory to the DB RAM and
retains its original block number. The new start address of the data
block is entered in the address list in DB 0.

Duplicating A data block in the user memory or in the DB RAM is duplicated in

the DB RAM and assignedn&w block number. The start address of
the new data block is entered in the address listin DB 0. The start
address of the old block is retained in DB 0, i.e. the original data
block remains valid.

The start address is only entered into DB 0 after the transfer is
completed and all identifiers are entered correctly in the block header.
The duplicated block is only accepted as valid or existing by the
system program after it has been completely transferred.

Note
Shifting DBO into the DB-RAM is not possible since it already
exists in the DB-RAM. However, you cadaplicate DB 0.

CPU 928B Programming Guide
C79000-B8576-C898-01 6-125

OB 254, OB 255: Transferring a Data Block to the DB RAM

Parameters

Possible errors

6 -126

1. ACCU-1-L-L

Number of the data block to be shifted or duplicated,
permitted values: Oto 255
(0 only for DX or for
duplicating DBs)

2. ACCU-1-H-L

With the value in ACCU-1-H, you specify whether you wangHhit
orduplicate a block:

ACCU-1-H-L=0:

the data block DB (OB 255 call) or DX with the number specified in
ACCU-1-L-L is shifted to the DB RAM

ACCU-1-H-L = number for new block,
permitted values: 1to 255

the data block DB (OB 255 call) or DX (OB 254 call) with the
number specified in ACU-1-L-L is duplicatedin the DB RAM and
entered in DB 0 with the number stored in AGC-H-L.

The values for ACCU-1-L-H and ACCU-1-H-H are not considered by
OB 254 and OB 255 and are therefore not significant for assigning
parameters to the OBs.

» The data block to be shifted does not exist (OB 19).

» The block already exists in the DB RAM (OB 31).
(therefore only execute the function once, ideally during the
start-up).

« Not enough memory space in the DB RAM (OB 31).

In the event of an error, the function is not executed. The system
program detects a runtime error and cals 19 or OB 31 How the

CPU reacts to the error depends on the way in which OB 19 or OB 31
are programmed (see Section 5.6.2).

If OB 19 or OB 31 is not programmed, the CPU goes into the stop
mode. In both cases, ACCU 1 contains an error identifier that defines
the error in greater detail.

CPU 928B Programming Guide
C79000-B8576-C898-01

OB 254, OB 255: Transferring a Data Block to the DB RAM

Example

It is assumed that the data blocks DB3 and DB4 are defined in the user
memory. No DB should yet be present in the DB-RAM other than DBO. The
following table shows the memory configuration after calling OB 255
several times with the parameters listed in the table.

Order Function ACCU -1- DB in memory after call
of
call -H-H | -H-L |-L-H |-L-L User mem. DB-RAM
1 Shift no 0 no 3 DB 4 DB 3
2 Duplicate . 5 . DB 4 DB 3,5
sig- sig-
3 Duplicate 6 5 DB 4 DB 3,5,6
4 Shift nifi- | o | nifi- | 4 no DB DB 3,4,5,6
cance cance

CPU 928B Programming Guide
C79000-B8576-C898-01 6-127

Extended Data Block DX 0 7

Contents of Chapter 7

7.1 APPICAtION . . o 7-4
7.2 Structure OF DX 0. .o oot

7.2.1 Example of DX O . ..o

7.3 Parameters for DX 0

7.4 Examples of Parameter ASSIgNMeENntt 7-13
7.4.1 STEP 5 Programming.o vttt e et e e e 7-13
7.4.2 Parameter Assignment using the PG Screen Form. i, 7-15

CPU 928B Programming Guide
C79000-B8576-C898-01 7-1

Extended Data Block DX 0 7

CPU 928B Programming Guide
C79000-B8576-C898-01

The following chapter explains how to use the data block DX 0 and
how it is structured. You will find information about the meaning of
the various DX 0 patterns and will learn how to create and how to
assign parameters via a screen form for a DX 0 data block based on
examples.

Application

7.1

Application

You can match some of the activities of the system program to your
own particular regiwements by selecting settings in DX 0 that differ
from the defaults (marked in the following table by "D").

The system program defaults (D) are set automatically at each COLD
RESTART. Following this, DX 0 is evaluated. If you do not program
and load a DX 0 block, the defaults remain valid; otherwise, the
settings you have made in DX 0 become valid.

You program DX 0 just as with other data blocks by assigning values
using STEP 5 statements, (see Sections 7.2 to 7.4.1) or (with PG
system software S5-DOS from Version 3.0 onwards) entering the
values as parameters in a special screen form on your PG (see
Section 7.4.2).

Note

Entries or changes to DXddhly become efféive when you perform
a COLD RESTART.

If amodified DX 0 comes into effect during a COLD RESTART,
any parameters you dmt modify areretained.

CPU 928B Programming Guide
C79000-B8576-C898-01

Structure of DX 0

7.2 Structure of DX 0

Start ID

Field

Field length

Parameters

End ID

CPU 928B Programming Guide
C79000-B8576-C898-01

DX 0 is made up of the following three parts:
» thestart ID for DX 0 (DW 0, 1 and 2)

» several fields of varying lengths (depending on the number of
parameters)

» the end delimiter EEEE.

ASCII characters MASKX0 in DW 0 to DW 2

A field in DX 0 consists of 1 to n data words, these contain the
following:

« thefield ID

» thefield length
and

» thefield parameters.

Thefield ID explains the meaning of the parameters that follow. Each

field is assigned to a specific system program part or to a specific
system function (e.g. field ID "04" means cyclic program execution).

Thefield length indicates the number of data words needed for the
parameters that follow.

Section 7.3 describes the possiidgameters

Numerical values are specified in hexadecimal format (KH).

This indicates the end of DX 0 with EEEEH in the last data word.

Structure of DX 0

Formal structure:

Bit no. 15 8 7 0
|
DW 0 4 D 4 1 ASCII M A
1 5 3 4 B chars.: S K
2 5 8 3 0 X0
3 Field ID 1 Field length 1
Parameter
Parameter Field 1
Parameter
Field ID 2 Field length 2
. Perameter Field 2
Field ID n Field length n
Parameter
Parameter Field n
Parameter
DW m E E E E End ID

Fig. 7-1 Structure of DX 0

CPU 928B Programming Guide
C79000-B8576-C898-01

Structure of DX 0

7.21
Example of DX 0

Start ID

Field ID/length
Parameters (occupies 1 DW)

Field ID/length
Parameters (occupies 2 DW)

End ID

CPU 928B Programming Guide
C79000-B8576-C898-01

DW 0: KH =4D41
DW 1: KH =534B
DW 2: KH =5830
DW 4. KH =1001
DW 5: KH = 0402
DW 6: KH = 1000 Field 2
DW 7: KH = 0040
DW10: KH = EEEE

When assigning parameters in DX 0, remember the following points:

» You can enter individual fields in any order.

« You do not need to specify fields you are not going to use.

« |If afield exists more than once, the field you enter last is valid.

» You can enter individual parameters in any order.

* You do not need to specify parameters you are not going to use.

- If a particular parameter is specified several times, the parameter
last specified is valid.

Parameters

for DX 0

7.3 Parameters for DX 0

Table 7-1 DX 0 parameters and their meaning
Field ID/ Parameters Meaningl)
length 1st/2nd word
RESTART and RUN:
02xx 1000 AUTOMATIC WARM RESTART after POWER UP
1001 AUTOMATIC COLD RESTART after POWER UP
2000 Synchronization of RESTART in multiprocessor operation
2001 No synchronization of RESTART in multiprocessor operation
3000 Addressing error monitoring
3001 No addressing error monitoring
4000 WARM RESTART
4001 RETENTIVE COLD RESTART
6000 Floating point arithmetic with 16-bit mantissa (optimized for
speed)
6001 Floating point arithmetic with 24-bit mantissa (optimized for
accuracy)
BBOO yyyy | Number of timers to be upda@d
Default: yyyy = 256 timers, i.e.
timer O to 255
permitted: 0...256
Cyclic program execution
04xx 1000 yyyy | Length of the cycle monitoring time in milliseconds;
default: yyyy = 150 ms,
permitted: ¥ yyyy < 32C8 (hex)
1 msto 13000 ms (dec)
4000 Update of the process image of the IPC flags without semaphore
protection
4001 Upate of the process image of the IPC flags with semaphore
protection (in the field, see Section 10.1.3)
CPU 928B Programming Guide
7-8 C79000-B8576-C898-01

Y

Parameters for DX 0

Field ID/ Parameters Meaningl)

length 1st/2nd word

Table 7-1 continued:

Interrupt-driven program exe cution

06xx 4) Selection of the processing mdte

2000 D Process interrupt signal, level-triggered

2001 Process interrupt signal, edge-triggered

Error handling

10xx Collision of time interrupts
1000 |p system stop when the event occurs and OB 33 is not loaded

1001 No system stop when the event occurs and OB 33 is not loaded
Controller error handling

1200 |p system stop when the event occurs and OB 34 is not loaded

1201 No system stop when the event occurs and OB 34 is not loaded
Cycle error handling

1400 |p system stop when the event occurs and OB 26 is not loaded

1401 No system stop when the event occurs and OB 26 is not loaded
Operation code error handling

1800 |p system stop when the event occurs and OB 27/29/30 is not
loaded

1801 No system stop when the event occurs and OB 27/29/30 is not
loaded

Runtime error handling

1A00 |p system stop when the event occurs and OB 19/31/32 is not
loaded

1A01 No system stop when the event occurs and OB 19/31/32 is not
loaded

CPU 928B Programming Guide
C79000-B8576-C898-01 7-9

Parameters for DX 0

Field ID/
length

Parameters
1st/2nd word

Meaningl)

Table 7-1 continued:

Addressing error handling

1C00 |p system stop when the event occurs and OB 25 is not loaded
1co1 No system stop when the event occurs and OB 25 is not loaded
Timeout error handling
1E00 System stop when the event occurs and OB 23/24 is not loaded
1E01 D No system stop when the event occurs and OB 23/24 is not
loaded
Interface error handling
2000 System stop when the event occurs and OB 35 is not loaded
2001 D No system stop when the event occurs and OB 35 is not loaded

EEEE

End delimiter

1) D = Default with DX 0 not loaded or block missing

2) xx = field length (number of data words occupied by the parameters)

3) For updating timers, please read the explanation on the following page

4) For parameters and their significance, see the table on page 7-12.

Note

The current PG software (STEP 5/ST Vers. 6 or STEP 5/MT
Vers. 2) for generating DX 0 using a screen form doesanifer

the parameters for interface error handling (2000 or 2001) and for
selection'Warm restart or retentive cold restart"

(4000 or 4001).

You can enter these parameters e.g. with the "output block" PG
function (do not forget to change the block length). You can no
longer edit a DX 0 mdified inthis way using the output screen form
of the current PG software.

CPU 928B Programming Guide
C79000-B8576-C898-01

the

Parameters for DX 0

Updating the timers

CPU 928B Programming Guide
C79000-B8576-C898-01

As standard, the timers T 0 to T 255 are updated.

If you enter the value "0" in DX Mo timers are updated, even if
they are included in the program. There is then also no error

message output.

Updating is as follows:

Entry ' |"I’and |'3'and | '5’and | '7’ and
’2’ 741 161 18!
Updating none | TOto| TOto | TOto | TOto
T1 T3 T5 T7
Note

You can also assign parameters to the number of timers in data b
DB 1 (see Section 10.1.6). However, we recommend that you

specify this parametemnly in DX O.
If you set the number of timebsth in DX 0 and in DB 1, the
value you specify imB 1 will be valid!

lock

Parameters for DX 0

Parameters for interrupt You can use the table below to find the correct parameter for your

processing interrupt processing and you can program DX 0 with this parameter.
Depending on the parameter you select, some (or all) interrupts will
be effective at block boundaries and other (or alBrinfpts will be
effective at operation boundaries, according to the shading in the

symbols.
Para- Time interrupts
ey Gk e s 1s 500 200 100 50 20 10 | GOt Proc
1) ms ms ms ms ms ms
1(2120%(:)D N Y s s s Y s A s s A N N B A
121204OA - J -J I 0 4 J J 4yt =
1(220) e e e Y e e e N B o oy
1%11(?08) N A s s s Y D A s A Y U 0 vy
1216 e D e Y Y A Y o s [y
1214 N A s A s Yy Y A B U [[y o s
1212 /) J J - o i e B e e
1210 N 1 Y s Y Y e Y Y o O o o o o o
120E N e D D B o 0 o o
120C N e D 4 B o O o o o o B
120A N U [B o o o o o B
1208 N O [B o o o o o B
1206 0 o oy o I
1204 0 o o o o oy
(1006)
D = Default

[] Interrupts at block boundaries
I Interrupts at operation boundaries

Note

If you enable interrupt processing at operation boundaries, the
operations "TNB" "TNW" may also be interrupted. This also applies
to a few of the special function organization blocks, standard
function blocks and controller function blocks.

Y The PG software for generating DX0 uses the "old" parameters. If you generate a DX0 with new parameters using
STEP 5 and want to display it on the PG, an error message is displayed.

CPU 928B Programming Guide
7-12 C79000-B8576-C898-01

Examples of Parameter Assignment

7.4 Examples of Parameter Assignment

7.4.1
STEP 5 Programming

Example A:

In multiprocessor operation, you want to use three CPUs: CPU A, B and C.
CPU A and B operate closely together, often exchange data and process a
complex restart program. CPU C is largely independent and has a short,
time-critical program.

As standard, all CPUs in multiprocessor operation start cyclic program
execution together, i.e. the CPUs wait until all CPUs have completed
their restart procedures and then start cyclic program execution at the
same time.

Since CPU Cruns a very short restart program independent of the other
CPUs, its restart procedure does not need to be synchronized. By

assigning parameters in DX 0, you can arrange for CPU C to start cyclic

program execution immediately after its restart, without waiting for CPU

A and B.

Programming DX O for CPU C:

DX 0 start ID "MASKX0" DW O: KH=4D41
DW 1: KH=534B
DW 2: KH= 5830
1st field ID/length DW 3: KH= 0201
parameter 1 DW 4. KH= 2001
end delimiter DW 5: KH= EEEE

Once you have loaded this DX 0 in the program memory, it becomes
effective after the next COLD RESTART. Since CPU C processes a very
short restart program and does not wait for A and B, its green LED is

lit immediately following the restart. The BASP signal (disable command
output) is, however, only cancelled when all three CPUs have completed
their restart. This means that CPU C cannot access the digital
peripherals.

CPU 928B Programming Guide
C79000-B8576-C898-01 7-13

Examples of Parameter Assignment

Example B:

Assigning the parameters to DX 0 as shown below achieves the following:

- the addressing error monitoring is disabled,

- the timer updating is disabled,

- the cycle time is set to 4 sec.

DX 0 start ID "MASKX0 DW O:

DW 1.

DW 2:
1stfield ID/length DW 3:
parameter DW 4:
parameter DW 5:

DW 6:
2nd field ID/length DW 7:
parameter) DW 8:

DW 9:
end delimiter DW10:

This assignment of parameters to DX 0 has the following effects on

program execution:

KH =4D41
KH =534B
KH = 5830
KH = 0203
KH = 3001
KH = BB00
KH = 0000
KH = 0402
KH =1000
KF = +4000
KH = EEEE

- The part of the process image not assigned to peripheral I/O modules

can be used as an additional flag area.

- The runtime of the system program is reduced, since no timers are

updated.

- Acycle error is only detected when the runtime of the user program

and the system program together exceeds 4 sec.

1) Parameters occupying two words must be identified with "2" when

specifying the field length.

CPU 928B Programming Guide
C79000-B8576-C898-01

Examples of Parameter Assignment

7.4.2

Assigning Parameters
using the PG Screen Form

Completing the DX 0 screen
forms

From stage IV of the PG system software S5-DOS, screen forms are
available for assigning parameters to DX 0. The PG software
generates the data block DX 0 automatically according to the
parameter defaults and the parameters you have specified. Two screen
forms are required for this parameter assignment.

For the basic steps you require to select and complete PG screen
forms, see your STEP 5 manual.

The PG screen form for completing DX 0 is in two parts.

The first DX 0 screen contains the first group of parameters (Fig. 7-2):

RESTART AFTER POWER UP

SYNCHRONIZE MULTIPROCESSOR RESTART
BLOCK TRANSFER OF IPC FLAGS

ADDRESS ERROR MONITORING

CYCLE TIME MONITORING

NO. OF TIMER CELLS

ACCURACY OF FLOAT. POINT ARITHMETIC

DX 0 - PARAM. ASS. (S5 135U: CPU 928, R PROCESSOR) DX 0

.

RESTART AFTER POWER UP:

SYNCHRONIZE MULTIPROCESSOR RESTART YES
BLOCK TRANSFER OF IPC FLAGS NO
ADDRESSING ERROR MONITORING YES

CYCLE TIME MONITORING (X 10 MS) 15 (RPROC.: 1-400

NO. OF TIMER CELLS

ACCURACY OF FLOAT. POINT ARITHMETIC 16 - BIT MANTISSA
#24-BIT MANTISSA ONLY BY CPU 928#

Fi1 F2 F3 Fa F5 F6 F7 F8

1 (1=WARM RESTART
2 =COLD RESTART)

CPU 928:1-600)

256 (RPROC: 0-128
CPU 928: 0-256)

SELECT CONTINUE /

Fig. 7-2

CPU

928B Programming Guide

C79000-B8576-C898-01

PG screen form for assigning parameters to DX 0 /part 1

Examples of Parameter Assignment

Once you have selected all the parameters in the first screen form for
your application, you can display the second screen form (Fig. 7-3)
with the following group of parameters:

ADDRESS. ERROR, CYCLE ERROR

ACKNOWL. ERROR, TIMER ERR.

COMMAND CODE ERROR, CONTROLLER ERROR
RUNTIME ERROR

PROCESS INT SERVICING

INTERRUPTABILITY OF USER PROGRAM BY

INTERRUPTS
4 DX 0 - PARAM. ASS. (S5 135U: CPU 928, R PROCESSOR) DX 0 N
SYSTEM STOP IF EVENT OCCURS AND ERROR OB IS MISSING
ADDRESS. ERROR (OB 25) YES CYCLE ERROR (OB 26) YES
ACKNOWL. ERROR (OB 23, 24) NO TIMER ERR. (OB 33) YES
COMMAND CODE ERR. (OB 27, 29, 30) YES CONTROLLER ERR (OB 34) YES
RUNTIME ERROR (OB 19, 31, 32) YES
PROCESS INT. SERVICING LEVEL - TRIGGERED
INTERRUPTABILITY OF USER PROGRAM BY INTERRUPTS: MODE 1
1: ALL INTERRUPTS AT BLOCK BOUNDS
2: ALL INTERRUPTS AT OPERATION BOUNDS
3: ONLY PROCESS INTERRUPTS AT OPERATION BOUNDS
4: ONLY PROC: AND CONTROLLER. INT. AT OP. BOUNDS
X: (X=10,...17) TIME INT. FROM OB10 - OBX AND CONTROLLER/PROC
INTS. AT OP. BOUNDS #ONLY POSSIBLE WITH CPU 928#
F1 F2 F3 F4 F5 F6 F7 F8
_ SELECT CONTINUE)

Fig. 7-3 PG screen form for assigning parameters to DX 0/ part 2

The following flowchart explains how to complete the screen forms,
store the parameters and load the generated data block DX O.

CPU 928B Programming Guide
C79000-B8576-C898-01

Examples of Parameter Assignment

Flowchart for completing the
DX 0 screen forms.

You want to change parameters in form 1?
NO YES

Repeat the following procedure until you have made all the required
changes in the screen form:

- Select input field:

Position the cursor before the parameter field. The display field
F3 at the bottom edge of the screen indicates whether you can
select between alternatives (SELECT displayed) or whether you
can change the parameter value (INPUT displayed).

- SELECT:
Press F3 until the required alternative is displayed.

- INPUT:

Press F3 once, the cursor jumps to the beginning
of the field. You can overwrite the field with a
permissible numerical range.

You want to change parameters in form 2?
NO YES

Press F6 (CONTINUE); the 2nd screen is displayed.

Change the parameters as described above for the 1st
screen form.

Press the enter key; the PG software enters all the parameter settings
from both screen forms and generates data block DX 0.

DX 0 is stored in the PG. You can load it into the CPU using the
programmer or you can store it on an EPROM submodule.

You will find an example to fill in on the next page.

CPU 928B Programming Guide
C79000-B8576-C898-01 7-17

Examples of Parameter Assignment

Example of filling in the DX 0
screen form

You want to assign parameters in DX 0 to achieve the following system
program response (different from the defaults).

- in multiprocessor operation, the CPU for which this DX 0 is
programmed does not wait until the other CPUs have completed their
restart procedure,

- the cycle monitoring time is 100 ms,

- arithmetic operations are performed with 24-bit floating point
mantissa,

- if cycle errors occur, the CPU does not go to the STOP mode if OB 26
is not loaded,

- the user program is interrupted at operation boundaries by all
interrupts.

To obtain these reactions, complete the screen form as follows:

First DX 0 screen form:

- Select the "synchronize multiprocessor restart” parameter with
function key F3 as NO.

- For the "cycle time monitoring" parameter, press function key F3 and
then type in the number 10 (= 100 ms).

- Select the "24-bit mantissa" for the "accuracy of floating point
arithmetic" parameter with function key F3.

- Press function key F6 (CONTINUE). The second DX 0 screen is then
displayed.

Second DX 0 screen form:

- Select NO for the "cycle error" parameter with function key F3.

- Enter the number "2’ in the "mode" field of the "“interruptability of
user program by interrupts” parameter (= all interrupts at operation
boundaries).

- Confirm your entries by pressing the enter key. Data block DX 0 is
now generated by the PG software.

Finally, transfer DX 0 to memory or to an EPROM submodule.

CPU 928B Programming Guide
7-18 C79000-B8576-C898-01

Memory Assignment and 8
Organization

Contents of Chapter 8

8.1

8.2
8.2.1

8.2.2.

8.3

8.3.1
8.3.2
8.3.3
8.34
8.3.5

Structure of the Memory Area.ot 8-4
Address Distribution inthe CPU 928B 8-5
Address Distribution of the System RAM. 8-6
Address Distribution of the Peripherals. i 8-7

User Memory Organization in the CPU 928B

Block Headers in the User MEMOIYt e
Block Address Listsin DataBlock DB O....... ...t

RIJ R AN . .ttt e e
RS /R A ..ot
Bit Assignment of the System Data Words.

CPU 928B Programming Guide
C79000-B8576-C898-01 8-1

Memory Assignment and 8
Organization

You can use this chapter as a reference section to check the
organization of the CPU 928B memory. The chapter also includes
important information for the user contained in some of the system
data words.

CPU 928B Programming Guide
C79000-B8576-C898-01 8-3

Structure of the Memory Area

8.1 Structure of the Memory Area
The memory area of the CPU 928B is basically divided into the
following areas:
Table 8-1 Structure of the memory area
Memory area Length Width
0 .
User memory: For OBs, FBs, FXs, PBs, SBs, DBs, Dxg max. 32x3%words 16 bits
0 .
DB-RAM: For data blocks, shift registers 23x2"%words 16 bits
Flags: S 1024 bytes 8 bits
Interface data area: RI, RJ each 256 words 16 bits
System data area: RS, RT each 256 words 16 bits
Counters: C 256 words 16 bits
Timers: T 256 words 16 bits
Flags: = 256 bytes 8 bits
Process input and each 128 bytes 8 bits
output image: PIl, PIQ
8 bits

Peripheral 1/0 area,
divided into:

IM 3
M 4

P peripherals
O peripherals

IPC flags

Coordinator module
Pages (CP, IP, 923C)
Distributed I/Os

256 bytes
256 bytes
256 bytes
256 bytes
256 bytes
256 bytes
2048 bytes
768 bytes

Refer to the memory map in the next section for the exact
addresses of the areas.

Note

With STEP 5, you should never access a memory cell within a
operand area (e.g. flags) directly using the absolute address of

memory area, but always relative to the base address of the
operand area.

The base addresses of all operand areas are in the system dat

area (RS area - see "system data assignment").

i
this

<3}

CPU 928B Programming Guide
C79000-B8576-C898-01

Address Distribution in the CPU 928B

8.2 Address Distribution in the CPU 928B

Bit no.15 8 7

0000

User memory

max. 32 X 210 words

|

RAM or EPROM
submodule, can be
plugged into the CPU

7FFF
8000 4
DB-RAM
10
23 x 277 words
DD7F
DD80
DB 0 (block address lists)
E3FF
E400 System RAM, internal
S flags to the CPU
E7FF (see also Fig. 8-2)
E800 System transfer data (RI/RJ areas),
system data (RS/RT areas),
counters, timers
EDFF
15 EEOO
Flags
EEFF
EF00
PII/PIQ area
EFFF \
FO00
Peripheral 1/0s S5 bus
(mgg;VﬁSMOg (see also Fig. 8-3)
FFFF
7
Fig. 8-1 Address distribution in the CPU 928B - overview

CPU 928B Programming Guide
C79000-B8576-C898-01

Address Distribution in the CPU 928B

8.2.1
Address Distribution of
the System RAM

Bit no. 15 8 | 7 0
8000
DB-RAM
DD7F
DD80
DBO
E3FF
E400
S flags
E7FF
E800
RI: interface data area
ESFF
E900
RJ: extended interface data area
E9FF
EAO0
RS: system data area
EAFF
EBOO
RT: extended system data area
EBFF
ECO00
Counters (256)
ECFF
EDOO
Timers (256)
EDFF
15 EEOO
Flags
EEFF
EF00
PII/PIQ area
EFFF
7 0
Fig. 8-2 Address distribution - system RAM

CPU 928B Programming Guide
8-6 C79000-B8576-C898-01

Address Distribution in the CPU 928B

8.2.2
Address Distribution of
the Peripherals

Bit no. 7
F000 o))]
Digital peripherals (with process image),
1024 bits inputs / 1024 bits outputs
Eggg P area
Digital or analog
peripherals (without process image),
1024 bits inputs / 1024 bits outputs
FO8F
F100 *
2048 bits extended peripherals O area
F1FF i
F200
2048 bits IPC flags
(on coordinator module/CP)
F2FF
F300
32 semaphores
(on coordinator module)
F3FF
F400
Data transfer area
for CP (pages) Page area
FBFF
FCO0O0
IM 3 area
FCFF
FDOO
IM 4 area
FDFF
FEOO
Distributed peripherals,
extended address volume
FEFF
FFOO
Reserved
FFFF
Fig. 8-3 Address distribution - peripherals (8 bits) on the S5 bus

CPU 928B Programming Guide
C79000-B8576-C898-01

Address Distribution in the CPU 928B

Address areas for the
peripherals and their
programming

P peripherals with process image

Area Address Parameters
(absdute address) with
LIB /TIB 0 to 127
ol LIW / TIW 0 to 126
EF00 - LID / TID 0 to 124
(process inpu Al/ AN 1/OI1/ONI L 00 to 127.7
EF7F IMage) SI/RI/=1 f
LQB / TQB 0 to 127
LQW / T QW 0 to 126
EF80 PIQ
LQD / TQD 0 to 124
(process output AQ /AN Q/O Q/ONQG- 00 to 127.7
EFFF Mage) SQ /RQ/=Q]

When the operation is processed, only the

process image is changed. The new status of the

process image is only output to the
peripherals at the end of the cycle.

7

F000 Digital peripherals

inputs/
FO7F outputs

FO80 Digital or analog

peripherals
FOFF inputs/outputs
P peripherals

LPY / TPY 0 to 127
LPW/ TPW 0 to 126
TPY /| TPY 128to 255
TPW/ TPW 128to 254

The inputs and outputs are addressed
directly byte or word oriented.

F100 Extended
peripherals
F1FF inputs/outputs

Q peripherals

LOY / TOY 0
LOW/ T OW 0

to 255
to 254

The inputs and outputs are addressed
directly byte or word oriented.

With STEP 5 operations, you can access the peripherals either directly
or via the process image. Remember that the process image only

exists for input and output bytes of the P peripherals with byte

addresses from 0 to 127.

Note

Using the interface modules IM 304, IM 307 and3®B, you can
access distributed address areas using your program. This allows
access to two new address areas similar to the O area. In cont
to the O area, however, access to these areas is only possible
using absolute addressing or using FB 196 of the "basic
functions" software package (refer to CataB¥h9).

rast

CPU 928B Programming Guide
C79000-B8576-C898-01

User Memory Organization in the CPU 928B

8.3 User Memory Organization in the CPU 928B

Depending on the memory subdule you are using, theser memory
consists of the memory area from 0000H to 7FFFH. When you load

the blocks of the user program, they are stored in any order (addresses
in ascending order).

"Alternative loading" of the There are alternative methods of loading DB/DX data blocks

data blocks depending on the setting in system data word &8
The default is that the data blocks are first loaded into the user
memory. Only when this has been filled are the data blocks stored in
internal DB RAM (8000H to DD7FH). You can reverse this order by
setting bit 0 in RS 144 ("alternative loading").

Memory information With the online function MEM CONF (memory configuration) you
can obtain the address (hexadecimal) of the memory cell containing
the block end operation of the last block in the memory submodule
which then tells you the occupation of the RAM submodule.

Block management When you correct blocks, the "old" block is declared invalid in the
memory and a new block is set up. This also applies when you delete
blocks; the blocks are not really deleted in the memory, but simply
declared invalid. Gaps created when blocks are deleted are seen as

free memory locations and used again when new blocks are loaded. m

Compress memory Using the COMPRESS MEMORY online function you can create
memory space for new blocks. This function optimizes the memory
occupation by deleting blocks marked as invalid and shifting valid
blocks together. The shifting is separate for the memory cdbia
and internal RAM module (see Section 11.2.2).

CPU 928B Programming Guide
C79000-B8576-C898-01 8-9

User Memory Organization in the CPU 928B

8.3.1
Block Headers in the User Each block in the memory begins with a five word long header.
Memory

1st word: block start identifier: 7070H

2nd word: high byte = block type

Bit no. 15 14 13 12 11 10 9 8

01H Data block DB

02H Sequence block SB
04H Program block PB
O5H Function block FX
08H Function block FB
OCH Data block DX

10H Organization block OB

0 O The block is invalid, not entered in the
address list in DBO
0 1 Block in the RAM is valid, and is entered

in the address list of DBO

Low byte = block number

The block number (0 to 255) is in the low byte of the 2nd header word
and is coded in binary: 00 to FFH

3rdword: the high byte of the 3rd word contains the identifiers for
the programmer, the low byte contains part of the
library nunber.

4th word: the fourth word contains the rest of the library Imem
5th word: the 5th word (low and high byte) contains the length of

the block including the block header. This is specified
in words.

CPU 928B Programming Guide
8-10 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

8.3.2
Block Address Lists in Data Data block DB 0 contains a list with the start addresses of all blocks
Block DB 0 in the memory submodule or in the DB RAM of the CPU. The system

program generates this list after POWER UP and updates it
automatically when you enter or change blocks at the programmer.

Address list start addresses A 256 words long address list is reserved in DB 0 for each block type
i.e. one word is reserved for each block. Blocks that are not loaded or
have been deleted have the start address "0".

The start addresses of the block address lists are also entered in the
system data RS 32 to RS 38.

RS 32: Start address of the DX address list
RS 33:Start address of the FX address list
RS 34: Start address of the DB address list
RS 35: Start address of the SB address list
RS 36: Start address of the PB address list
RS 37: Start address of the FB address list

RS 38: Start address of the OB address list (only 48 words long)

Block start addresses The start addresses always refer to the first waéied the block
header:

» thisis DW 0 of data blocks
» thisisthe first STEP 5 operation of a logic block

(in FBs, this is the "JU" operation before the name and the
parameter list)

CPU 928B Programming Guide
C79000-B8576-C898-01 8-11

User Memory Organization in the CPU 928B

Storing block addresses in

DB 0:
n = start address of the PB address list (= contents of RS 36)
DBO
15 0.

n Address PB 0

n+1 Address PB 1

n+2 Address PB 2

n+178 Address PB 178 If the value "0" is entered as

the address, the block is not loaded

n+179 Address PB 179

Fig. 8-4 Block addresses in DB 0

Examples of how to obtain a
block address Start address of FB 40

Solution a):

'L RS 37 Base address of the FB address list
'L KB40 + FB number
+F = Address of the memory cell con-
: taining the start address of FB 40
LIR1 Load the start address of FB 40
in ACCU 1.
(If the block is not loaded,
the start address = 0)

Solution by):
'L RS 37 Base address of the FB address list
:MAB Load the BR register with the base
address

'LRW +40 Load the contents of the memory cell
"base address + 40" in ACCU 1

CPU 928B Programming Guide
8-12 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

Determining the start address and length of data block DB 50

a) Using indirect memory access:

L RS 34 Load the base address of the DB address list
'L KB50 Calculate the address of the entry for DB 50
+F and load the start address in ACCU 1
LIR1
L KBO If the block does not exist, jump to the
I=F NIVO label
:JC =NIVO
:ENT Load the start address of DB 50 in ACCU 3 and
‘TAK in ACCU 1
L KF-1 Decrement the start address by 1 and
+F load the block length in ACCU 1
LIR1
NIVO : Reaction if the block does not exist
DB O User memory:
15 0 15 0
e 0104
DB O 0000 7070 0105
DB 1 0000 0106
0000 DB 50
DB 2 header 0107
‘ . ‘ 0108
| . | 0009 0109
DB 49 0000 DW 0 010A
DB 50 010A DW 1 010B
DB 51 0000 DW 2 010C
DW 4 010D

Fig. 8-5 Example a): start address of DB 50

CPU 928B Programming Guide
C79000-B8576-C898-01 8-13

User Memory Organization in the CPU 928B

Continuation of the example (address and length of DB 50):

b) Using the special function organization block OB 181
"test data blocks (DB/DX)":

OB 181 (see Section 6.16) executes the same function as described in
example 2/ a). In addition to this function, it also determines whether
the data block is in the user memory (RAM or EPROM submodule) or in the

DB RAM.

'L KY1,50 Data block DB 50
JU OB 181 "Test data blocks (DB/DX)"
2JC =NIVO Jump if block does not exist
:JJM =PROM Jump if in EPROM submodule
:JZ =ANWE Jump if in RAM submodule
:JP =DBRA Jump if in DB RAM
JU =FEHL Jump to error processing
NIVO : Data block does not exist
BEU
PROM Data block is in the user memory
: (EPROM submaodule)
:BEU
ANWE : Data block is in the user memory
: (RAM submodule)
:BEU
DBRA : Data block is in the DB RAM
BEU
FEHL : Error processing
‘BE
Result: ACCU-1-L: Start address of DB 50
ACCU-2-L: Length of DB 50
RLO =1 if DB 50 does not exist
8.3.3
Rl / RJ Area The Rl area is an area 256 words long in the internal system RAM of

the CPU. It occupies addresses E800H to E8FFH.

The RJ area is an area 256 words long in the internal system RAM of
the CPU. It occupies addresses E900H to E9FFH.

You can use the entire Rl area (R1 0 to Rl 255) and the entire RJ area
(RJ 0 to RJ 255) for your own purposes.

Only an overall reset can clear the RI / RJ areas (zeros entered).

CPU 928B Programming Guide
C79000-B8576-C898-01

User Memory Organization in the CPU 928B

8.34
RS / RT Area The RS and RT areas contain information for the system programmer
and system internal data.

TheRS areais an area 256 words long in the internal system RAM of
the CPU. It occupies the addresses EAOOH to EAFFH.

Caution
You can only write to system data words RS 1, RS 60 to
RS 63, RS 133 and RS 140.

A - Youcanuse RS 60 and RS 63 for your own purposes.
- RS 1and RS 133 have afixed function and influence the

processing of the program. You must only write valid
identifiers to them.

You can only read the other systentata

- Writing to these system data can affect the functional
capability of your CPU and connected programmers.

TheRT areais an area 256 words long in the internal system RAM
of the CPU. It occupies the addresses EBOOH to EBFFH.

You can use the entire RT area (RT 0 to RT 255) for your own
purposes.

The RS/ RT area can only be cleared by an overall reset.

You can obtain the information of some of the system data (the
internal configuration of the CPU, the software release, the CP
identifier etc.) using the SYSTEM PARAMETERS online function.

Following figures 8-6 and 8-7 you will find the bit assignment of
some system data that you can evaluate using STEP 5 operations or
with the PG (refer to Section 5.3.1 for an explanation of the
abbreviations).

CPU 928B Programming Guide
C79000-B8576-C898-01 8-15

User Memory Organization in the CPU 928B

Assignment of the system
data in the RS area

RS Name Addr.
0 Interrupt condition codeword (ICCW) EA00
1 Interrupt condition code reset word (ICRW) EAO1
2 Interrupt condition code group word (ICMK) EAQ2
3 —— . EA03

Start-up error identifier condition code
4 EA04
5 Stop IDs Restart Ds EA05
6 Cycle IDs Submodule 1Ds EA06
7 Overall reset IDs Error IDs (H) EA07
8 Error IDs (F) Error Ds (L) EA08
9 Current ID number EAQ9

10 Base address of the input process interface modules EAOA
11 Base address of the output process interface modules EAOB

12 Base address of the process input image EAOC

13 Base address of the process output image EAOD

14 Base address of the flag area EAOE

15 Base address of the timer area EAQF

16 Base address of the counter area EAL0

17 Base address of the interface area EALL

18 PLC software release EA12

19 End address of the user submodule EA13
20 Base address of the system area EAL4
21 Length of the DB address list EAL5

22 Length of the SB address list EAL6
23 Length of the PB address list EALT

24 Length of the FB address list EAL8

25 Length of the OB address list EAL9

26 Length of the FX address list EALA
27 Length of the DX address list EALB

28 Length of the address list DB (DB 0) EALC

29 Slot identifier | CPU identifier 2 (type) EALD

‘ : reserved
Fig. 8-6 RS area memory map (part 1)

CPU 928B Programming Guide
8-16 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

30 Length of the block header information EALE
31 CPU identifier 1 PG interface software release | EALF
32 Base address of the DX address list EA20
33 Base address of the FX address list EA21
34 Base address of the DB address list EA22
35 Base address of the SB address list EA23
36 Base address of the PB address list EA24
37 Base address of the FB address list EA25
38 Base address of the OB address list EA26
39 EA27
54 EA36
55 Counter for 1 hour (to 3599 sec, hex) EA37
56 EA38
Reserved for handling block
59 EA3B
60 EA3C
Reserved for user purposes
63 EA3F
64 Reserved for system program EA40
79 EA4E
80 Additional error ID if bit FE-5 is set in RS 8 EA50
81 EA51
Reserved for system program
127 EATF
128 EA80
129 EA81
130 "Closed loop control" ID EA82
131 Condition codeword "disable all interrupts" EA83
132 Condition codeword "delay all interrupts” EA84
133 "Process image updating" ID EA85
134 EA86
135 Condition codeword "disable individual time interrupts" EA87
136 EA88
137 Condition codeword "delay individual time interrupts" EA89
138 EA8A
139 EA8B
140 Condition codeword "write and delete blocks" EA8C
141 EA8D
143 EA8BF
144 Alternative loading of data blocks EA90
145 EA91
255 EAFF
Fig. 8-7 RS area memory map (part 2)

CPU 928B Programming Guide
C79000-B8576-C898-01 8-17

User Memory Organization in the CPU 928B

8.3.5

Bit Assignment of the

System Data Words

RSO

Interrupt condition codeword (system data RS 0):

Interrupt condition codeword

Address EAOOH

Table 8-2 Assignment of RS 0 (Interrupt condition codeword)
High byte
Bit no. Assignment

15 NAU

14 PEU

13 BAU

12 MP-STP

11 ZYK

10 Qvz

9 ADF

8 STP

Low byte

7 BCF

6 FE-3

S LZF

4 REG

3 STUEB

2 STUEU

1 WECK

0 DOPP

The system data RS 0 corresponds to the CAUSE OF INTERR. in the
ISTACK. If, e.g. a runtime error occurs during the program execution,
bit number 5 is set. Once the program processing level LZF has been
processed completely, bit number 5 is reset.

CPU 928B Programming Guide
C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 1 Interrupt condition code reset word ICRW
Address: EAO1H
RS 1: Active interface, released for user
If you set bit number 9 or bit number 10 of the ICRWnthet ADF
or QVZ is ignored and does not affect the execution of the program.

After a QVZ or ADF occurs, the system program resets the
corresponding bit.

Table 8-3 Assignment of RS 1 (Interrupt condition code reset word)

High byte
Bit no. Assignment
15
14
13 not used
12
11
10 QVZ
9 ADF
8 not used
Low byte
7
6
5
4 not used
3
2
1
0

Each program processing level has its 6@RW.

CPU 928B Programming Guide
C79000-B8576-C898-01 8-19

User Memory Organization in the CPU 928B

Example of UALW

The following example tests whether a module can be addressed at a
certain peripheral address. If the module does not exist, ICRW prevents
a timeout and a program written for the situation is executed. The
example also tests whether a particular peripheral address has been
entered in DB 1. If the address does not exist in DB 1, ICRW prevents an
addressing error and a special program is executed.

FB 201
NAME:L
JU FB 10
NAME:PERITEST Test whether a module can be addressed at
PADR : PB 128 peripheral adddress 128
MASK : KM 00000100 00000000
:JJN =M001
- This program section is processed if the module
cannot be addressed
MO001 :
JU FB 10
NAME:PERITEST Test whether a module with peripheral
PADR : QB4 address 4 is entered in DB 1
MASK : KM 00000010 00000000
:JJN =M002
- This program section is processed,
if the peripheral address
- is not entered
M002 :
‘BE
FB 10
NAME:PERITEST
DECL :PADRI/Q/D/BIT/C: | BI/BY/WID: BY
DECL :MASKI/Q/D/B/TIC: D KM/KH/KY/KS/KF/KT/KC/KG: KM
L RS1 Load and save ICRW
T RS60
LW =MASK Set QVZ or ADF bit
OW
T RS1 Write ICRW back
'L =PADR Single peripheral access or access to the
: process image
L RS1
LW =MASK Mask QVZ or ADF hit
AW
L RS60 Write old ICRW back, so that the next
T RS1 QVZ or ADR can be detected
‘TAK
‘BE

CPU 928B Programming Guide
8-20 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 2 Interrupt condition code group word ICMK (RS 2):
Address: EAO2H
The 16 bits of the interrupt condition code group word correspond to
the possible causes of error listed in the CAUSE OF INTERR. in the
ISTACK.

If one of these errors occurs, the corresponding bit is set.

Table 8-4 Assignment of RS 2 (Interrupt condition code group word)

High byte
Bit no. Assignment
15 NAU
14 PEU
13 BAU
12 MP-STP
11 ZYK
10 Qvz
9 ADF
8 STP
Low byte
7 BCF
6 FE-3
5 LZF
4 REG
3 STUEB
2 STUEU
1 WECK
0 DOPP

You can only read the interrupt code group word (ICMK in the
ISTACK).

CPU 928B Programming Guide
C79000-B8576-C898-01 8-21

User Memory Organization in the CPU 928B

Example of UAMK

If the CPU goes to the stop mode as a result of an addressing error
(ADF), ICMK bit number 9 is set. If an operation code error (BCF) occurs
when processing the ADF, bit number 7 is also set in the ICMK.

Content of the ICMK (binary): 00000010 10000000
Representation (hexadecimal) in the ISTACK: 0280

While only the last error to occur is marked under CAUSE OF INTERR. in
the ISTACK, all the errors that have occurred are indicated in the ICMK
(ISTACK depth 05: in ICMK, 5 bits are set). If you convert the
hexadecimal code to the binary code, you can analyze the contents of the
ICMK. In this way, you can find out which error led to the stop mode.

The error bits are reset as soon as the corresponding error program
processing level has been completely processed and is exited.

Interrupt codes of errors to which no program processing level is
assigned (e.g. NAU, PEU, STUEB, etc.) are cleared during RESTART.

CPU 928B Programming Guide
8-22 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 5 STOP and RESTART IDs
Address: EAO5H

The IDs correspnd to the control bits in lines 1 and 2 of the ISTACK.

Table 8-5 Assignment of RS 5 (STOP and RESTART IDs)

High byte: STOP IDs

Bit no. Assignment
15 PRI-STP
14 not used
13 FE-STP
12 BARB-END
11 PG-STP
10 STP-SCH
9 STP-BEF
8 MP-STP

Low byte: RESTART IDs

ANL

not used
NEUST
MWA

AWA

not used

NEU-ZUL

Ol | N W| | O] O N

MWA-ZUL

CPU 928B Programming Guide
C79000-B8576-C898-01 8-23

User Memory Organization in the CPU 928B

RS 6 CYCLE and Submodule/MPL IDs
Address: EAO6H

The IDs correspnd to the control bits in lines 3 and 4 of the ISTACK.

Table 8-6 Assignment of RS 6 (Cycle and submodule/MPL IDs)

High byte: CYCLE IDs

Bit no. Assignment
15 RUN
14 not used
13 EIN-PROZ
12 BARB
1 OB1-GEL
10 FBO-GEL
9 OB-PROZA
8 OB-WECKA

Low byte: Submodulé MPL IDs

32KW-RAM

16KW-RAM

8KW-RAM
EPROM

KM-AUS

KM-EIN

DIG-EIN

Ol | N W| | O] O N

DIG-AUS

CPU 928B Programming Guide
8-24 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 7 RESET IDs/Initialize error IDs
Address: EAO7H

The IDs correspnd to the control bits in lines 5 and 6 of the ISTACK.

Table 8-7 Assignment of RS 7 (RESET IDs/Initialize error IDs)

High byte: RESET IDs

Bit no. Assignment
15 URGELOE
14 URL-IA
13 STP-VER
12 ANL-ABB
1 UA-PG
10 UA-SYS
9 UA-PRFE
8 UA-SCH

Low byte: Initialize error IDs

DXO0-FE

not used

MOD-FE

RAM-FE

DBO-FE

DB1-FE

DB2-FE

Ol | N W| | O] O N

KOR-FE

CPU 928B Programming Guide
C79000-B8576-C898-01 8-25

User Memory Organization in the CPU 928B

RS 8 Error IDs HW/SW
Address: EAO8BH

The IDS correspond to the control bits in lines 7 and 8 of the ISTACK.

Table 8-8 Assignment of RS 8 (Error IDs HW/SW)

Bit no. High byte: Error IDs HW
15 NAU
14 PEU
13 BAU
12 STUE-FE
11 ZYK
10 QVZ
9 ADF
8 WECK-FE
Bit no. Low byte: Error IDs SW
7 BCF
6 not used
S FE-5
4 Power-down error
3 FE-3
2 LZF
1 REG-FE
0 DOPP-FE

CPU 928B Programming Guide
8-26 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 29 Slot ID/CPU/PLC type

Address: EA1DH

Table 8-9 Assignment of RS 29 (Slot ID/CPU/PLC type)

Bit no. High byte: Error IDs HW
15
14
13 not used
12
11 CPU no. 4
10 CPU no. 3
9 CPU no. 2
8 CPUno. 1
Bit no. Low byte: Error IDs SW
7
6
P
5 CPU type
4
3
2
1 PLC type
0
RS 29 (HIGH): Active interface, used by the handling blocks and in multiprocessor
communication as well as by OB 218 and the SED and SEE
operations.
RS 29 (LOW): PLC type: 0111 S5-135U
CPU type: 1011 CPU 928B

CPU 928B Programming Guide
C79000-B8576-C898-01 8 - 27

User Memory Organization in the CPU 928B

RS 80

RS 130

Address: EA50H (high and low):

This contains additional information to define the cause of the error
when bit5is set in RS 8 by the system or when control bit FE 5 is
marked in the ISTACK output.

Identifier in RS 80 | Cause of error
2460H

Ready signal continuously active on the S§
bus

AddressEA82 (low):

The system data RS 130 indicates the following statuses of the
program processing level "closed loop control".

Bitno.0=0: program processing level "closed loop control"
activated

Bitno.0=1: program processing level "closed loop control"
suppressed

Before you call a restart organization block (OB 20, 21 or 22) the

system program evaluates data block DB 2 (if it exists). Depending on

the result of the evaluation, RS 130 is set or reset by the system
program. Following this, the system program calls a restart OB.

If RS 130 (LOW) is reset, the closed loop controller is processed in
cyclic operation according to the controller listin DB 2.

CPU 928B Programming Guide
C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 131 Condition codeword "disable all interrupts": see OB 120
(Section 6.5)
AddressEA83 (low)

The system data RS 131 indicates the following statuses of the
program processing levels "interrupt processing".

Table 8-10 Assignment of RS 131 (Disable all interrupts)

Bit no. Low byte: Disable all interrupts
7 0
6 0
> 0
4 0
3 Delay interrupt
2 Process interrupts
1 Clock-driven time interrupt
0 Time interrupts at fixed intervals

Bit = 1 means: interrupt(s) is (are) disabled.

RS 132 Condition codeword "delay all interrupts": see OB 122
(Section 6.7)

The system data RS 132 indicates the following statuses of the
program processing levels "interrupt processing".

Table 8-11 Assignment of RS 132 (Delay all interrupts)
Bit no. Low byte: Delay all interrupts
7 0
6 0
5 0
4 0
3 Delay interrupt
2 Process interrupts
1 Clock-driven time interrupt
0 Time interrupts at fixed intervals

Bit = 1 means: interrupt(s) is (are) delayed

CPU 928B Programming Guide
C79000-B8576-C898-01 8-29

User Memory Organization in the CPU 928B

RS 133 Process image updating

AddressEA85 (low)

Table 8-12 Assignment of RS 133 (Process image updating)

Bit no. Low byte: Process imageupdating

not used

Al OO N

KM-AUS

KM-EIN

DIGH-EIN

Ol | N W

DIGH-AUS

Bitno.0=0: next process image of the digital outputs will be
output

Bitno.0=1: next process image update of the digital outputs
will be suppressed

Bitno.1=0: next process image of the digital inputs will be
read in
Bitno.1=1: next process image update of the digital inputs

will be suppressed

Bitno.2=0: next process image of the IPC flag inputs will be
read in
Bitno.2=1: next process image update of the IPC flag inputs

will be suppressed

Bitno.3=0: next process image of the IPC flag outputs will
be output
Bitno.3=1: next process image update of the IPC flag

outputs will be suppressed

Note
If a bitis set, it prevents the process image update once, following
this it is immediatelyeset to "0" by the system program.

CPU 928B Programming Guide
8-30 C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 135 Condition codeword "disable individual time interrupts": see
OB 121 (Section 6.6)
AddressEA87

The system data RS 135 indicates the following statuses of the
program processing levels "time-driven interrupt processing".

Table 8-13 Assignment of RS 135 (Disable individual time interrupts)

Bit no. High byte: Disable individual time interrupts
15 0
14 0
13 0
12 0
11 Time interrupt 5 sec (OB 18)
10 Time interrupt 2 sec (OB 17)
9 Time interrupt 1 sec (OB 16)
8 Time interrupt 500 ms (OB 15)
Bit no. Low byte: Disable individual time interrupts
7 Time interrupt 200 ms (OB 14)
6 Time interrupt 200 ms (OB 13)
5 Time interrupt 50 ms (OB 12)
4 Time interrupt 20 ms (OB 11)
3 Time interrupt 10 ms (OB 10)
2 0
a 0
0 0

Bit = 1 means: this time interrupt is disabled.

CPU 928B Programming Guide
C79000-B8576-C898-01 8-31

User Memory Organization in the CPU 928B

RS 137

Condition codeword "delay individual time interrupts":

see OB 123 (Section 6.8.)

AddressEA89

The system data RS 137 indicates the following statuses of the
program processing levels "time interrupt processing":

Table 8-14 Assignment of RS 137 (Delay individual time interrupts)
Bit no. High byte: Delay individual time interrupts
15 0
14 0
13 0
12 0
11 Time interrupt 5 sec (OB 18)
10 Time interrupt 2 sec (OB 17)
9 Time interrupt 1 sec (OB 16)
8 Time interrupt 500 ms (OB 15)
Bit no. Low byte: Delay individual time interrupts
7 Time interrupt 200 ms (OB 14)
6 Time interrupt 200 ms (OB 13)
5 Time interrupt 50 ms (OB 12)
4 Time interrupt 20 ms (OB 11)
3 Time interrupt 10 ms (OB 10)
2 0
a 0
0 0

Bit = 1 means: this time interrupt is delayed.

CPU 928B Programming Guide
C79000-B8576-C898-01

User Memory Organization in the CPU 928B

RS 140 Condition codeword "write and read blocks"
AddressEA8C

System data RS 140 indicates whether blocks have been overwritten,
newly loaded or deleted since the last OVERALL RESET of the CPU
or since the last time system data RS 140 was cleared. The bits for
changes and block type are allocated to each block. Before a new
monitoring section, system data RS 140 must be cleared. RS 140 is
also cleared during an overall reset.

Table 8-15 Assignment of RS 140 (Write/read IDs)

Bit no. High byte: Write/read IDs
15 Block deleted
14 Block newly loaded
13 Block overwritten
12
11
10 not used
Bit no. Low byte: Write/read IDs
7 not used
6 DX
5 DB
4 FX
3 FB
2 SP
1 PB
0 OB

CPU 928B Programming Guide
C79000-B8576-C898-01 8-33

User Memory Organization in the CPU 928B

RS 144

"Alternative loading of data blocks into DB RAM"
AddressEA90

In the CPU 928B, all blocks are first loaded by the programmer into
the user memory submodule as standard. Only when there is no more
memory space there, are th&ta blocks (DBs, DXs) and only the

data blocks loaded into DB RAM.

You can influence the order of loading data blocks via bit no. 0 of
system data word RS 144:

Bit 0 = O: Default "Standard behavior":
The data blocks are loaded into the user memory
submodule first. Only when there is no more
space there, are they loaded into DB RAM.

Bit0=1: The data blocks are loaded into DB RAM first.
Only when there is no more space there, are they
loaded into the user memory submodule.

The remaining bits of RS 144 are not assigned.

Note
Code blocks are loaded into the user memory regardless of the
setting in RS 144.

The setting in RS 144 has no influence on operations and special
function OBs for generating and reloading blocks.

CPU 928B Programming Guide
C79000-B8576-C898-01

Memory Access using 9
Absolute Addresses

Contents of Chapter 9

9.1

9.2
9.21

9.2.2

9.3
9.3.1

9.4

9.4.1
9.4.2
9.4.3

9.4.4

INtrOdUCHION. . .. o e e 9-4
Access using the Address iN ACCU 1. i e e e 9-8
LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly 9-9
Registers0to 3and 9to 12: ACCU 1,2,3and 4, 9-11
Register 6: Data Block Start Addre@BA) 9-11
Register 8: DBL = Data Block Length 9-14
Register 15: SAC = Step Address Counterttt 9-15
Examples of using the Registers i e e 9-16

Transferring Fields of Memory

Example of Transferring Memory Fields

Operations with the Base Address Register (BR Register) 9-26
Operations for Transfer between Registers. 9-27
Accessing the Local MemMOIY i 9-28
Accessing the Global Memory. 9-29
Testing and setting a busy location inthe global area. 9-29
Load and transfer operations for the global memory organized in bytes.......... 9-31
Load and transfer operations for the global memory organized in words 9-32
Accessing the Page MEMOIY ot e e 9-33
OPENING @ PAGE -+« ot vt vt et et e e e e e e e 9-34
Testing and setting a busy location inthepage area.......................... 9-34
Load and transfer operations for the pages organized in bytes. 9-35
Load and transfer operations for pages organized inwords 9-37

CPU 928B Programming Guide
C79000-B8576-C898-01 9-1

Memory Access using 9
Absolute Addresses

This chapter explains how to use STEP 5 operations and special
STEP 5 registers to address data in certain memory areas using
absolute addresses.

CPU 928B Programming Guide
C79000-B8576-C898-01 9-3

Introduction

9.1 Introduction

The STEP 5 programming language contains operations with which
you can access the entire memory area. These operations belong to the
"system operations".

Caution
If the operations described in this section are not used properly,
A STEP 5 blocks and system data can be overwritten. This can
result in undesirable operating statuses. Only experienced sy stem
programmers should use operations that work with absolute
addresses.

Local memory Local memory is the memory area available in each CPU (user
submodule, DB-RAM, RI, RJ, RS, RT area, counters, timers, flags,
process image).

Global memory Global memory only exists once for all CPUs and is addressed via the
S5 bus.
Memory organization Memory areas are organizedigtesorwords as follows:

» bytes: each address addresses a byte

» words: each address addresses a 16-bit word
(= 2 bytes)

CPU 928B Programming Guide
9-4 C79000-B8576-C898-01

Introduction

The local memory
is internal and exists

in each CPU The global memory

is an external memory
’ shared by all CPUs in
’ a PLC via the S5 bus

15] 7 0 15 7 0
0000H 0000H

EDFFH
EEOOH

EFFFH

FOOOH

F400H
FBFF

FCOOH

255

15 7 0

Pages

1024 bytes/words

FEFFH

FFFFH

Select register

Fig. 9-1 Global and local memory

CPU 928B Programming Guide
C79000-B8576-C898-01

2048 bytes/words

Introduction

Memory access With the following operations, you can access local or global memory
areas using absolute addresses (see also-Bjg. 9

Access to the local and You can acccess both the local and global areas:
global area

» local area (0000 to EFFF) and the part of the global memory or-
ganized in bytes (FO0O0 to F3FF, FCOO0 to FFFF):

TNB, TNW, LIR, TIR

« the part of the local area organized in words (0000 to E3FF and
E800 to EDFF):

LRW, TRW, LRD, TRD

Access only to the global area You can access the following parts of the global area:
» the part of the global area organized in bytes (0000 to EFFF):
LY GB, LY GW,LYGD, TYGB, TYGW, TY GD, TSG
« the part of the global area organized in words (0000 to EFFF):

LW GW, LW GD, TW GW, TW GD, TSG

Access to the page area You can access the following part of the page area:

» the part of the global area organized in bytes (F400 to FBFF,
= dual-port RAM area):

LYCB,LYCW, LYCD, TYCB, TYCW, TY CD, TSC

» the part of the global area organized in words (F400 to FBFF,
= dual-port RAM area):

LW CW, LW CD, TW CW, TW CD, TSC

CPU 928B Programming Guide
9-6 C79000-B8576-C898-01

Introduction

L1 no access possible zzz2 access possible
M7 77
. . \
. ///
. . |
) /// ‘
. . |
. m |
%%% | . ‘
. \ . \
o ‘ . ‘
ggé | | —— /%g/ | —
e T = I T
a) LIR, TIR, TNB, TNW b) LRW, TRW, LRD, TRD

= =

SN = EuN
L —
L |
c) LY GB, LY GW, LY GD d) LW GW, LW GD
TY GB, TY GW, TY GD, (TSG) TW GW, TW GD, (TSG)

= e

] — u | it
T 7 ——~)
T — ==/ I — 22777
e)LY CB, LY CW, LY CD f) LW CW, LW CD,
TY CB, TY CW, TY CD, (TSC) TW CW, TW CD, (TSC)
Fig. 9-2 Access to local or global memory areas using absolute addresses (see also Fig. 9-1)

CPU 928B Programming Guide
C79000-B8576-C898-01 9-7

Access using the Address in ACCU 1

9.2 Access using the Address in ACCU 1

Application

Operations

Registers are memory cells used by the CPU to execute a STEP 5
program. Every register is 16 bits wide. Using the system operations
LIR (load a register indirectly) and TIR (transfer a register indirectly)
you can access the contents of the registers.

Table 9-1 Operations for indirect memory access using registers

Operation | Operand |Function

LIR Register || oad thespecified registerwith the
no. content of a memory word addressed by
0to 15 |ACCuU 1 (20-bit address).
TIR Register || pad the content of thepecified register
no. in the memory word addressed by

0to 15 |AccCu 1 (20-bit address).

The memory word is either in the local area (0000 to EFFF) or in the
the part of the global area organized in bytes (FO00 to F3FF, FCOO to
FFFF).

The following pages explaihich registersyou can use with the
operations.

Examples explaihow to use the operations.

CPU 928B Programming Guide
C79000-B8576-C898-01

Access using the Address in ACCU 1

9.21

LIR/TIR: Loading to or
Transferring from a 16-Bit
Memory Area Indirectly

LIR and TIR with the page
area

LIR/TIR: with 8-bit
memory areas

CPU 928B Programming Guide
C79000-B8576-C898-01

The following table shows which register numbers you can use with
the CPU 928B for the LIR and TIR operations and how these are
assigned.

Table 9-2 16-bit register for LIR/TIR

Register no. | Register asginment (each 16 bits wide)
0 ACCU-1-H (left word of ACCUL, bits 16 to 3%)
1 ACCU-1-L (right word of ACCUL, bits O to 15)
2 ACCU-2-H
3 ACCU-2-L
5 Block stack pointer (offset)
6 DBA (data block start address register)
8 DBL (data block length register)
9 ACCU-3-H
10 ACCU-3-L
11 ACCU-4-H
12 ACCU-4-L

D Loading the contents of an addressed memory register into register
'0'or "1 overwrites the address stored in ACCU 1.

Registers 4, 7, 13, 14 and 15 do not exist on the CPU 928B. LIR/TIR
operations with these register numbers are treated as no operations
(NOP).

The LIR and TIR operations anet suitable for accessing the page
area (addresses F400 to FBFF) in the S5-135U multiprocessor PLC.
Use instead the operations from Section 9.4.4 "Accessing the Page
Memory" or the special functions from Section 6.21 "Page Accesses".

If you use the LIR and TIR operations to access memory areas that are

only 8 bits wide i.e., for memory addresses from E400 to E7FF and
> EEOO remember that

» the TIR operation transfers only the low byte of the register. The
high byte of the register is lost.

and

« the LIR operation overwrites the high byte of the registers with
FFH.

Access using the Address in ACCU 1

Figures 9-3 and 9-4 illustrate the difference between LIR/TIR access
to word and byte-oriented areas:

15 0
15 0 15 0
addressed ;
Register n
emary cel — ’
ACCU 1
LIR n
15 0 15 0
addressed Register n
e es ™ -)
ACCU 1
TIR n
Fig. 9-3 LIR/TIR with 16-bit memory areas (word-oriented)
7 0
15 0 15 Jr 0
addressed Register n
emory ool S AL 5 4 ’
ACCU 1
LIR n
15 0 15 i 0
addressed Register n
memory cell ~ A ;
ACCU 1
TIR n

Fig. 9-4 LIR/TIR with a-bit memory areas (byte-oriented)

CPU 928B Programming Guide
9-10 C79000-B8576-C898-01

Access using the Address in ACCU 1

Registers Oto 3and 9 to 12: During program execution, the CPU uses the accumulatordfassb
ACCU 1,2, 3and 4 Using the TIR operation, you can transfer the contents of the
accumulators into memory cells with absolute addresses. With the
LIR operation, you can load the contents of memory cells with
absolute addresses into the accumulators. The absolute address of the
memory cell is always in ACCU-1-L.

Examples

You want to load the contents of the memory cell with the address AO0O
into flag word FW 100.

'L KHAOO0 load address AOOO of the memory cell into ACCU 1
LIR1 load the contents of the memory cell in ACCU 1 into

: register 1 = load ACCU 1

‘T FW 100 store the contents of address A00O in flag word FW 100
‘BE

You want to transfer the contents of flag word 200 to the memory cell
with the address A0QO.

'L FW 200 load flag word FW 200 into ACCU 1

'L KHAOOO load address AOQO, the destination address,
: in ACCU 1 (flag word FW 200 to ACCU 2)
TIR 3 transfer contents of register 3 = ACCU 2 into
: the memory cell addressed by ACCU 1

:BE n

Register 6: Data Block Start ~ When you open a data block with the operations C DB and CX DX,
Address (DBA) the address of DW 0 of this data block is loaded in register 6. The
block address listin DB 0 contains this address.
The DBA register is set to "0" before each OB 1 or FB 0 call.
The DBA registeremains thesameif the following occurs:

e ajump operation (JU/JC) causes program execution to continue in
a different block

or

» a different program processing level is inserted.

CPU 928B Programming Guide
C79000-B8576-C898-01 9-11

Access using the Address in ACCU 1

It changesif one of the following occurs:
« another data block is opened

or

» the program returns to a higher level block after a new data block
was opened in the inserted block (see also Section 2.4.2, Range of
Validity of Data Blocks).

Note
In the ISTACK, the address entered in the DBA register appears
under the heading "DB-ADD".

You normally access data words with the STEP 5 operations L/T DW,
L/T DR, L/T DL, L/T DD, A/IO/AN/ON/=/S/R Dx.y. You can only

use these operations up to data word DW 255. However, by
manipulating the DBA register, you can use them to access data
words > 255. This is also possible with special function OB 180 (see
Section 6.15).

Examples
Example 1: Effect of the "CX DX 17" operation on the DBA register:
Addresses DX 17
1516H
5 words
1517H
1518H block header
1519H
151AH
DBA——— 151BH KH = 0000 DW 0
151CH KH = 0001 DW 1
151DH ' DW 2

Fig. 9-5 Using the DBA register

When DX 17 is called, the address of the memory word in which DW 0 is
stored is entered in the DBA register. In this example, the DBA is

4152H.

Note:

In the ISTACK, the address entered in the DBA register appears

under the heading 'DB-ADD'.

CPU 928B Programming Guide
C79000-B8576-C898-01

Access using the Address in ACCU 1

Example 2: By changing register 6, you can load data word DW 300 of
data block DB 100.

FB7
NAME : LIR/TIR6
L RS34 start address of the DB address list plus 100
:ADD BN+100 produces the address list entry of DB 100
LIR 1 start address of DB 100 (DW 0) to ACCU 1
‘ADD KF+200 store address of DW 200 in DB 100 in system data
T RS 62 word RS 62
L RS20 load base address of system data
‘ADD KF+62 load address of RS 62 in ACCU 1
LIR 6 load DBA register with the contents of the address
: of RS 62, i.e., the data block start is set to
DW 200

L DW100 load DW (200 + 100) = DW 300
T FW100 store DW 300 in flag word FW 100
‘BE

Example 3: Changing the DBA and DBL registers.

FB7
NAME :0B180
:C DB100 DBA and DBL registers are loaded with the values
'L KF200 of DB 100 and with the help of OB 180 the
:JU OB 180 DBA register is increased by 200 and the DBL
: register reduced by 200
:JC =ERRO error output, in case DB 100 contains
: less than or equal to 200 data words
'L DW 100 load DW 300 and
T FwW100 store in FW 100
‘BEU
ERRO : program section for error handling
‘BE
Note

If you manipulate the DBA register as shown in example 1, the
DBL register isnot changed. This means that transfer error
monitoring can no longer be guaranteed.

By using the special function OB 180 "variable data block
access" you can also shift the DBA register by a selected number
of data words. Since OB 180 also changes the DBL register at the
same time, transfer error monitoring remains in effect.

CPU 928B Programming Guide
C79000-B8576-C898-01 9-13

Access using the Address in ACCU 1

Register 8: DBL = Data
Block Length

In addition to the DBA register, a DBL register is loaded every time a
data block is called. This contains the length (in words) of the data
block calledwithout the block header. The DBL register is set to "0"
before each OB 1 or FB 0 call.

The DBL registeremains the sameif the following occurs:

e ajump operation (JU/JC) causes program execution to continue in
a different block

or
» a different program processing level is inserted.
It changesif one of the following occurs:

« another data block is opened

or

» the program returns to a higher level block after a new data block
was opened in the inserted block (see also Section 2.4.2).

CPU 928B Programming Guide
C79000-B8576-C898-01

Access using the Address in ACCU 1

Example
Effect of the "CX DX 17" operation on the DBL:
DX17
Addresses
1516H
1517H 5 words
1518H block header
1519H
151AH
DBA — 151BH aaaa DW O
151CH bbbb DW 1
151DH cccc DW 2
151EH dddd DW 3
DBL
151FH eeee DW 4
1520H fFFEf DW 5
1521H gggg DW 6
1522H hhhh DW 7
Fig. 9-6 Using the DBL register
When DX 17 is called, the number of existing data words is entered in
the DBL register. In this example the DBL is 8 (DWO0to DW 7)
Note: Inthe ISTACK, the number entered in the DBL register appears under
the heading "DBL-REG".
Register 15: SAC = Step During STEP 5 program execution, register 15 contains the absolute
Address Counter address of the operation in the program memory to be processed next.

CPU 928B Programming Guide
C79000-B8576-C898-01 9-15

Access using the Address in ACCU 1

9.2.2
Examples of using the
Registers
Example 1: You want all the data words of a data block to contain a

constant.

The program shown below writes the constant KH=A5A5 to all data words in
DB 50. After changing the STEP 5 operations shown in bold face, it can
also be used to write any values required to different data blocks (DB

or DX). Non-existent data blocks or data blocks with no data words are
detected and cause a jump to the NIVO label.

The start address (DBA) and length (DBL) of the data block are

determined by the special function OB 181 "test data block (DB/DX)".

The program uses all four accumulators. In the figure, you can see the
occupation of the accumulators during the program as far as the LOOP
label. Within the loop, the accumulator occupation does not change.
ACCU 1 initially contains the address of the last data word

(DBA + DBL - 1) and is reduced by 1 each time the loop is run through.
ACCU 2 contains the address of the first data word (DBA). The loop is
abandoned as soon as the contents of ACCU 1 are less than the contents
of ACCU 2.

The operation TIR 10 that stores the contents of ACCU-3-L (the constant)
under the address located in ACCU-1-L is used to write to the data

words.
'L KHAS5A5 constant to be written to
: all data words
'L KY 1,50 type and number of the data block
‘ENT
JU OB181 special function OB "test data blocks"
:JC =NIVO abandon if DB 50 does not exist
‘TAK
‘ENT
+F
: ACCU 1 := address of last data word + 1
ACCU 2 := address of the first data word
: ACCU 3 := constant
A=F abandon if DB 50 contains
:JC =NIVO no data words
LOOP :ADD BN-1 the constant contained in ACCU-3-L
TIR 10 is written to all data words beginning
: with the last data word
><F scan: 1st data word reached?
:JC =LOOP return to loop if 1st data word not reached

continuation of the program...

Continued on next page

CPU 928B Programming Guide
C79000-B8576-C898-01

Access using the Address in ACCU 1

Example 1 continued:

CONT :after all data words have been
: written to
‘BEU

NIVO:If DB 50 does not exist
: or has no data words
‘BE

Note: The section of program from the label LOOP can be used to write a
constant to any memory areas (e.qg. flags, timers, counters).

Sequence of events

‘ ‘ ? constant ‘
‘ constant r» - @

‘ ‘ constant ‘
constant / ‘ TYPE/NO ‘ ‘ TYPE/NO @

JU OB181
L KHA5A5 L KY1.50 ENT JC =NIVO

‘ ‘ constant constant
ACCU 3 constant ‘ constant / DBA constant
ACCU 2 @ DBL DBA / DBA

ACCU 1 @ DBA DBL DBL

TAK ENT +F

ACCU 4

I

Fig. 9-7 Occupation of the accumulators during the program

Example 2: Clearing all flag bytes (FY 0 to FY 255)

L KBO constant to be written to
: all flag bytes
L RS14 base address of the flag area (= address
: of the first flag byte FY 0)
ENT
L KF+256 + length of the flag area
‘ENT = (address of the last flag byte FY 255) + 1
+F
LOOP :ADD BN -1 write the constant contained in ACCU-3-L
TIR 10 to all 256 flag bytes, beginning with

: flag byte FY 255
:JC =LOOP

CPU 928B Programming Guide
C79000-B8576-C898-01 9-17

Transferring Fields of Memory

9.3

Application

Operations

Parameters

Permissible memory areas

Transferring Fields of Memory

You can use the system operations TNB and TNW to transfer fields of
memory (max. 255 bytes with TNB, max. 255 words with TNW).

With the TNB and TNW operations you can access both the local
memory area and the part of the global memory area organized in
bytes (FO0O to F3FF, FCO0 to FFFF).

Table 9-3 Operations for field transfer
Operation Operand |Function
TNW 0to 255 Field transfer O to 255 bytes
TXB - Field transfer o to 255 words
Field length

Operand = number of bytes (TNB) or number of words (TNW)

End address ofthe source area

ACCU-2-L = End address of the source area

End address ofthe destination area
ACCU-1-L = End address of the destination area

The entire source and destination areas must be located in one of the
memory areas listed in Table 9-4 arahnot overlap.

Table 9-4 Memory areas permitted for TNW, TXB and TXW

Addresses Memory area

User memory:

0000H to 1 FFFH User submodule (16 bits) 8 Kwords
O0O0O0O0OH to 3FFFH User submodule (16 bit) 16 Kwords
0O0O0O0OH to 7FFFH User submodule (16 bit) 32 Kwords

CPU 928B Programming Guide
C79000-B8576-C898-01

Transferring Fields of Memory

Addresses Memory area

Table 9-4 continued:

System RAM:

8000H toDD7FH DB-RAM (16 bits)

DD80H to E3FFH DB 0 (16 bits)

E400H to E7FFH S flags (8 bits)

E800OH to EDFFH System data (16 bits: BA, BB, BS, BT,
timers and counters)
EEOOH to EFFFH RAM (8 bits: flags, process image)
FOOOOH to FFFFH I/Os (8 bits)/S5 bus

Sequence The field transfer is made in descending order, i.e. it begins with the
highest address of the source area (= end address) and ends with the
lowest.

Use in the page area The TNB and TNW operations amet suitable for accessing the page

area (addresses F400 to FBFF) in the S5-135U multiprocessor PLC.
Use instead the operations from Section 9.4.4 "Accessing the Page
Memory" or the special functions from Section 6.2.1 "Page Accesses".

Special features

Pseudo operation boundaries The TNB and TNW operations are long-running STEP 5 operations

with TNB and TNW that contain so-called "pseudo operation boundaries". This means that
the data is transferred in sub-fields of various sizes depending on the
source and destination area. If an error (e.g. cycle error) or an
interrupt (e.g. caused by a time or process-driven interrupt) occurs
during the transfer of a sub-field, the appropriate organization block is
inserted at the end of this sub-field. This is, however, only possible if
DX 0 is programmed to allow interruptions at operation boundaries.

If one or more timeouts and/or addressing errors occur during the
transfer, all the sub-fields are transferred first and then before the next
operation is executed, the appropriate error organization block is
called once (if QVZ and ADF occur simultaneously, only the

QVZ-OB is called). The error address specified is alwagaddress

at which an error occurrdiist. Since TNB and TNW operate with
decrementing addresses, when there is more than one error, this is
always thehighesterror address in the area in which an efiret

occurred. OB 2, OB 10 to 18 or an error organization block can be
inserted at the pseudo operation boundaries.

CPU 928B Programming Guide
C79000-B8576-C898-01 9-19

Transferring Fields of Memory

TNB and TWN between 8 and
16 bit memory areas

Fig. 9-8

7 0 15 87 0
Addresses Addresses
in . in ascending
asgendmg order
order
Byte 5
Byte 4 Byte 5
Byte 3 Byte 4 Byte 3
Byte 2 Byte 1 —
Byte 2 Y w y Destination/source
Byte 1 address
Source/
destination
address

Transfer of bytes 1 to 5:

Transfer of bytes 1 to 4:

Transferring blocks of memory

L <source address>

L <destination address>
TNB 5

L <source address>

L <destination address>
TNW 2

CPU 928B Programming Guide
C79000-B8576-C898-01

Transferring Fields of Memory

9.3.1
Example of Transferring
Memory Fields

a) Task

You want to copy a field of maximum 4095 data words from a DB or DX data
block to a different DB or DX data block. The start of the field of data

is specified within the source and destination data block by an offset

value between 0 and 4095.

The program is stored in FB 10.

KY (type, no.)
STNO FB10
Source DB
KF (Offset)
SOFF
Source DB
KY (type, no. BY
(type, no.) . DTNO STAT >
Dest. DB Status
KF (Offset)
DOFF
Dest. DB
KF (block length
KF (lockleng® | en
Fig. 9-9 Function block for transferring fields of data

Before the copying function is started, the input parameters are
checked. In the event of an error, bit no. 7 = 1 is set in the output
parameter STAT and the type of error specified in bits no. 0 to no. 2 as

follows:
Bit no. 7 6 5 4 3 2 1 0
0 = no error Type of error
1 =error 1 = source DB = destination DB

2 = offset or length > 4095

3 = source DB does not exist or illegal

4 = source DB too short

5 = destination DB does not exist or illegal

6 = destination DB in read-only memory (EPROM submodule)
7 = destination DB too short

Continued on next page

CPU 928B Programming Guide
C79000-B8576-C898-01 9-21

Transferring Fields of Memory

Example 1 continued:

b) Program structure:

FB 10 is made up of five program sections with the following tasks:

Input parameters

a) Check that the source and destination data block are not the same
type and same number.

b) Check that the input parameters "source offset", "destination offset
and "length of field" are less than 4096.

Source data block:

a) Check that the source data block exists and is long
enough.

b) Calculate the absolute address of the last data word in the
destination field.

Destination data block:

a) Check that the destination data block exists and is long enough and
whether it is in the random access memory (RAM submodule or DB-RAM).
b) Calculate the absolute address of the last data word in the
destination field.

Transfer:
Execute the copy function with the help of the TNW operation.
Blocks of data with more than 255 words are transferred in sub-fields

of 128 words (operation TNW 128).
Any remaining data is transferred by an additional TNW operation.

Condition code:

Write the output parameter "status” according to the results of the
checks carried out.

¢) Occupied memory cells

FW 242 End address of the data destination
FW 244 End address of the data source
FW 246 Length of the field of data

FW 248 Offset in the destination data block
FW 250 Type and number of the destination data block

FW 252 Offset in the source data block
FW 254 Type and number of the source data block

RS 60 Sub-field counter

Continued on next page

CPU 928B Programming Guide

9-22 C79000-B8576-C898-01

Transferring Fields of Memory

Example 1 continued:
b) Programming function block FB 10

Note: If you want to copy from data word DW 0, the program sections shown
in heavy print can be omitted. You do not specify an offset value.

FB10
SEGMENT 1

NAME:DB-DB-TR
DECL :STNOI/Q/D/B/TI/C: D

DATA BLOCK-DATA BLOCK TRANSFER
KM/KH/KY/KS/KF/KT/KC/IKG: KY

DECL :SOFFI/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KF
DECL :DTNOI/Q/D/B/TIC: D KM/KH/KY/KS/KF/KT/KC/IKG: KY
DECL :DOFFI/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KF
DECL :LENGI/Q/D/BITIC: D KM/KH/KY/KS/KF/KT/KCIKG: KF
I/Q/D/BITIC: Q BI/BY/WI/D: BY

DECL :STAT

: BEGINNING OF INPUT PARAMETERS
LW =STNO

TYPE (DB/DX) AND NUMBER OF
T FwW254 THE SOURCE DATA BLOCK
LW =DTNO TYPE (DB/DX) AND NUMBER OF
T Fw250 THE DESTINATION DATA BLOCK
I=F SOURCE DB = DESTINATION DB ?
:JC =F001 JUMP IF YES
‘LW =SOFF OFFSET IN SOURCE
T FW 252 DATA BLOCK
‘LW =DOFF OFFSET IN DESTINATION
T FW 248 DATA BLOCK
ow
LW =LAEN LENGTH (NUMBER OF DATA WORDS)
T FW246 OF THE FIELD TO BE TRANSFERRED
: (LENGTH OF FIELD)
:ow OR SOURCE OFFSET, DESTINATION OFFSET
'L KH FO00 LENGTH >= 4096 ?
AW JUMP, IF YES

END OF INPUT PARAMETERS

JP =F002

Continued on next page

CPU 928B Programming Guide
C79000-B8576-C898-01

Transferring Fields of Memory

Example 1 continued:

L FW254

JU OB 181
:JC =F003
‘TAK

‘ENT

L FW 252
ENT

L FW 246
+F

<F

:JC =F004
L KB 1
-F

+F

T FW 244
L FW 250
:JU OB 181
:JC =F005
:JM =F006
‘TAK

‘ENT

L FW 248
ENT

L FW 246
+F

<F

:JC =F007
L KB 1
-F

+F

T Fw242

BEGINNING OF SOURCE DATA BLOCK
TYPE AND NUMBER OF SOURCE DATA BLOCK
TEST DATA BLOCK
JUMP, IF BLOCK TEST NEGATIVE
Al: NUMBER OF DWs, A2: ADDRESS
A3: ADDRESS
OFFSET IN SOURCE DATA BLOCK
A3: NUMBER OF DWs, A4: ADDRESS
LENGTH OF FIELD
OFFSET + LENGTH OF FIELD
NO. OF DWs <OFFSET + FIELD LENGTH ?
JUMP, IF YES
A2: OFFSET + FIELD LEN, A3: ADDRESS
OFFSET + FIELD LENGTH - 1
OFFSET + FIELD LEN - 1 + ADDRESS
END ADDRESS OF THE DATA SOURCE
END OF SOURCE DATA BLOCK

BEGINNING OF DESTINATION DATA BLOCK
TYPE AND NUMBER OF DESTINATION DATA BLOCK
TEST DATA BLOCK
JUMP, IF BLOCK TEST NEGATIVE
JUMP, IF BLOCK IN EPROM
Al: NUMBER OF DWs, A2: ADDRESS
A3: ADDRESS
OFFSET IN DESTINATION DATA BLOCK
A3: NUMBER OF DWs, A4: ADDRESS
LENGTH OF FIELD
OFFSET + LENGTH OF FIELD
NO. OF DWs < OFFSET + FIELD LENGTH ?
JUMP, IF YES
A2: OFFSET +FIELD LEN, A3: ADDRESS
OFFSET +FIELD LENGTH - 1
OFFSET +FIELD LEN -1 + ADDRESS
END ADDRESS OF THE DATA DESTINATION
END OF DESTINATION DATA BLOCK

Continued on next page

CPU 928B Programming Guide
C79000-B8576-C898-01

Transferring Fields of Memory

Example 1 continued:

L KB 0O

L FY 246
I=F

SLW 1

T RS 60
L FwW 244

'L Fw242

:JC =REST

LOOP ' TNW 128

‘ADD KF -128
‘TAK
‘ADD KF -128
‘TAK
:JU OB 160
:JC =LOOP

REST :DO FW 246

END

FO01

F002

FO003

F004

FO05

F006

FO07

CPU 928B Programming Guide

"TNWO

L KBO

‘T =STAT

‘BEU

L KB129

:JU =END

'L KB 130

:JU =END

'L KB 131

:JU =END

L KB132

:JU =END

'L KB133

:JU =END

'L KB 134

:JU =END

L KB135

:JU =END

BE

C79000-B8576-C898-01

BEGINNING OF TRANSFER
COMPARISON VALUE
FIELD LENGTH, HIGH BYTE
FIELD LENGTH >= 256 WORDS ?
MULTIPLIED BY 2, NUMBER OF SUB-
FIELDS EACH WITH 128 WORDS
END ADDRESS OF THE DATA SOURCE
END ADDRESS OF THE DATA DESTINATION
JUMP, IF FIELD LENGTH < 256 WORDS
TRANSFER A SUB-FIELD
REDUCE SOURCE END ADDRESS BY
LENGTH OF THE SUB-FIELD
REDUCE DESTINATION END ADDRESS
BY LENGTH OF THE SUB-FIELD
COUNT LOOP
JUMP, IF NOT ALL SUB-

FIELDS HAVE BEEN TRANSFERRED
FIELD LENGTH, LOW BYTE
TRANSFER REMAINDER OF FIELD
END TRANSFER

BEGINNING OF CONDITION CODE
ID 00 (HEX): NO ERROR
OUTPUT PARAMETER STATUS/ERROR

ERROR ID 81 (HEX):

SOURCE DB = DESTINATION DB
ERROR ID 82 (HEX):

OFFSET OR LENGTH >= 4096

ERROR ID 83 (HEX):

SOURCE DB ILLEGAL
ERROR ID 84 (HEX):

SOURCE DB TOO SHORT
ERROR ID 85 (HEX):

DESTINATION DB ILLEGAL
ERROR ID 86 (HEX):

DESTINATION DB IN READ-ONLY MEMORY
ERROR ID 87 (HEX):

DESTINATION DB TOO SHORT

END OF CONDITION CODE

Operations with the Base Address Register (BR Register)

9.4 Operations with the Base Address Register (BR Register)

Application

Operations

Changing the BR register

The BR register (base address register, 32 bits) is used by the load and
transfer operations described from Section 9.3.3 onwards to address
the memory. The absolute address of the memory cell to be accessed

is calculated as the sum of the contents of the BR register and a
constant as follows:

Absolute address = BR register contents + constant

Table 9-5 Load and arithmetic operations with the BR register

Operation Operand |Function

MBR |Constant |Load the BR register with a
(OH to 20-bit constant*
F FFFFH)

ABR |Constant |Add a 16-bit constant to the contents
(-32 768 to |of the BR register
+32 767)

D Bits 2°to 2** of the BR register are setto "0".

MBR 0 to FFFFF ABR -32768 to +32767
20-bit constant 31 0
T
BR
31 19 0 |
T
BR
(O 0)
16-bit constant
(fixed point number)
31 0

Fig. 9-10 Loading the BR register

» The BR register isetained whenthe same program processing
level iscontinued in another blockcalled by the jump operation
(JQUFB/JCFB).

« The BR register isetained afternesting in a different program
execution level.

When the system program callsother program processing level
the BR register is set t@"™.

CPU 928B Programming Guide
C79000-B8576-C898-01

Operations with the Base Address Register (BR Register)

9.4.1
Operations for Transfer
between Registers

Application You can use the operations described in this section for the fast
exchange of values between the restisters ACCU 1, STEP address
counter (SAC) and base address register (BR).

Operations

Table 9-6 Operations for transfer between registers

Operation | Operand | Explanation

MAS — Transfer the contents of ACCU 1 (bft 2
to 214) to the SAC register (STEP
address counter)

MAB — Transfer the contents of ACCU 1 (bits
2to 231) to the BR register (base
address register)

MSA - Transfer the contents of the STEP
address counter (SAC register) to
Accu1?

MSB — Transfer the contents of the SAC

register (STEP address counter) to the
BR register (base address regist@r)

MBA — Transfer the contents of the BR register
(base address register) to ACCU 1

Transfer the contents of the BR register
MBS — (bits ?to 2% base address register) to
the SAC register (STEP address
counter)

D Bits 2°to 2! are set to "0"

The following figure illustrates how the registers are changed by the
operations.

CPU 928B Programming Guide
C79000-B8576-C898-01 9-27

Operations with the Base Address Register (BR Register)

ACCU 1, BR

31

MAS, MBS
14 0

SAC

16 15

ACCU 1

31

1 6@5
T

AB, MBA

BR

Fig. 9-8

9.4.2

Accessing the Local

Memory

Application

Operations

Register - register transfer operations

14 0
SAC
MSA, MSB
31 1615 0
0 00 ACCU 1, BR

With the following operations, you can access the local memory

organized in words using an absolute memory address. The absolute
address is the total of the BR register contents and the 16-bit constant

contained in the operation 2868 to +32767).

Table 9-7 Operations for accessing the local memory
Operation | Operand |Descrption

LRW Constant |add the specified constant to conteht
(-32768 to |of the BR register and load the word
+32767) addressed in this way in ACCU-1-L

LRD Constant |add the specified constant to conteht
(-32768 to |of the BR register and load the double
+32767) word addressed in this way in ACCU 1

TRW Constant |add the specified constant to content
(-32768 to |of the BR register and transfer the
+32767) content of ACCU-1-L to the word

addressed in this way

CPU 928B Programming Guide
C79000-B8576-C898-01

Operations with the Base Address Register (BR Register)

Operation | Operand |Descrption

Table 9-7 continued:

TRD Constant |add the specified constant to content
(-32768 to |of the BR register and transfer the
+32767) content of ACCU 1 to the double word
addressed in this way

D ACCU 2new=ACCU L

Permissible address area The absolute address must be as follows:

 for LRW, TRW: between 000H and E3FFH or ESOOH and
EDFFH

e forLRD, TRD: between 000H and E3FEH or EBO0H and
EDFEH

Error reaction If the calculated address of the memory location is not in the
permissible memory area, the CPU detects a runtime error and calls
OB 31, providing it is loaded. If OB 31 is not loaded, the CPU goes to
the stop mode.
In both cases, error IDs are entered in ACCU-1-L, that define the error
in greater detail (see Section 5.6.2).

9.4.3

Accessing the Global

Memory

Application With the following operations, you can access the global memory
organized in bytes or wordsusing an absolute memory address. The
absolute address is the total of the BR register contents and the
constant contained in the operation (-32768 to 32767).

Testing and setting a busy You can control the access of individual CPUs to common memory

location in the global area areas using a busy location. Each memory area used by more than one

CPU has a busy location assigned to it that must be tested by each
CPU before it can access this area. The busy location either contains
the value "0" or the slot identifier of the CPU currently using the
memory area. This CPU releases the memory areaibyig "0" to

the busy location again when it is finished(Note the explanations

for the operations "set semaph&€eD" and "enable semaphore/SEE"

in Section 3.5.5.).

CPU 928B Programming Guide
C79000-B8576-C898-01 9-29

Operations with the Base Address Register (BR Register)

Sequence

Result

Permissible address area

Error reaction

The CPU tests and sets a busy location using the TSG operation.

Operation | Operand Explanation
TSG -32768 to | Add the specified constant to the
+32767 content of the BR register and test an

set the location addressed in this way|.

The low byte of the word addressed by the contents of the BR register
+ the constant is used as the busy location. If the content of the low
byte is "0", the TSG operation enters the slot ID (from RS 29) into the
busy location.

Testing (= reading) and setting (= writing) the busy location is one
program unit that cannot be interrupted.

You can evaluate the result of the test in condition codes CC 0 and
CC 1, as follows:

CC1 CCO Explanation

0 0 The busy location contains the value
"0"; the CPU enters its slot ID.

1 0 The CPU’s own slot ID is already
entered in the busy location.

0 1 The busy location contains a different
slot ID.

Note

All CPUs that require synchronized accessdonamon global
memory areamust use the TSG operation.

The absolute address must be between 0000H and EFFFH.

If the calculated address of the memory location is not in the range
shown, the CPU detects a runtime error and &#is31, providing it

is loaded. If OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L, that define the error
in greater detail (see Section 5.6.2).

CPU 928B Programming Guide
C79000-B8576-C898-01

Operations with the Base Address Register (BR Register)

Load and transfer
operations for the global
memory organized in bytes Table 9-8 Operations for access to the global memory organized in bytes

Operation | Operand |Descrption

LYGB |.32768 to |add the specified constant to content
+32767 of the BR register and load the byte
addressed in this way in
ACCU-1-LLY ¥

LYGW |.32768 to |add the specified constant to content
+32767 of the BR register and load the word
addressed in this way in Accu-14.d

LYGD |.32768 to |add the specified constant to content
+32767 of the BR register and load the double
word addressed in this way in Accd1

TYGB .32768 to |add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU-1-LL to the byte
addressed in this way

TYGW |.32768 to | add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU-1-L to the word
addressed in this way

TYGD |.32768 to |add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU 1 to the double
word addressed in this way

D ACCU-1-LH and ACCU-1-H are setto '0’.
2) ACCU-1-H is setto '0’.

3) ACCU 2pew: = ACCU g

Permissible address area The absolute address must be as follows:
» between 0 and EFFFH (forLY GB, TY GB)
e between 0 and EFFEH (for LY GW, TY GW)

» between 0 and EFFCH (for LY GD, TY GD)

CPU 928B Programming Guide
C79000-B8576-C898-01 9-31

Operations with the Base Address Register (BR Register)

Error reaction

Load and transfer
operations for the global

memory organized in words

Permissible address area

Error reaction

If the calculated address of the memory location is not in the range
shwon, the CPU detects a runtime error and GH#ls31, providing it

is loaded. If OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L, that define the error
in greater detail (see Section 5.6.2).

Table 9-9 Operations for access to the global memory organized in words

Operation | Operand |Descrption

LWGW |.32768 to |add the specified constant to content
+32767 of the BR register and load the word
addressed in this way in ACCU-141 2

add the specified constant to content
LWGD |.32768 to |of the BR register and load the double
+32767 word addressed in this way in ACCU

add the specified constant to content
of the BR register and transfer the
TWGW 1.32768 to |content of ACCU-1-L to the word
+32767 addressed in this way

add the specified constant to content
of the BR register transfer the
TWGD |.32768 to |content of ACCU 1 to the double
+32767 word addressed in this way

D ACCU-1-H is setto '0’.

2) ACCU 2pew: = ACCU Lyg

The absolute address must be as follows:
o forLW GW, TW GW: between 0 and EFFFH

o forLWGD, TW GD: between 0 and EFFEH

If the calculated address of the memory location is not in the range
shown, the CPU detects a runtime error and &#is31, providing it

is loaded. If OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L, that define the error
in greater detail (see Section 5.6.2).

CPU 928B Programming Guide
C79000-B8576-C898-01

Operations with the Base Address Register (BR Register)

9.4.4
Accessing the Page Memory

Application Using the following operations, you can access pages organized in
bytes or wordsvia an absolute memory address. The absolute
address is the total of the BR register contents and the constant
contained in the operation 2868 to 32767).

Procedure of accessing The global area includes a "window" in the address area F400H to
pages FBFFH to allow access to one of maximum 256 memory areas
(= pages). A page occupies a maximum of 2 K addresses and can be
organized in bytes or words. Before each access to the page area, one
of the 256 pages must be selected by entering its page number in the
select register. Writing to the select register and the subsequent access
to the page area cannot be interrupted.

Before any access (load/transfer) to the page area, one of the 256
pages must be opened. To do this, you transfer the number of the page
to be opened to ACCU-1-L; this number is entered in the CPU

internal page register with the ACR operation. All subsequent page
operations write the contents of the page register to the select register
of the appropriate modules on the S5 bus before the page is accessed.

Changing the page register « The page register ietained whenthe same program
processing level izontinued in another blockcalled by the
jump operation (JU FB /JC FB).

« When the page register is modified in a blockyitisie is
retained if the program jumps back to the calling block at the end
of the block.
» After another program processing level has been inserted, the
system program loadse same valuein the page register as it had

before the other level was inserted.

» When the system program cadisother program processing
level, the page register is set @'

CPU 928B Programming Guide
C79000-B8576-C898-01 9-33

Operations with the Base Address Register (BR Register)

Opening a page

Error reaction

Testing and setting a busy
location in the page area

Sequence

Operation | Operand Explanation

ACR Open the page whose number is
located in ACCU-1-L
permitted values: 0 to 255

The page number must be between 0 and 255. If this is not the case,
the CPU recognizes a runtime error and caBs31, providing it is

loaded. If OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L, that define the error
in greater detail (see Section 5.6.2).

You can control the access of individual CPUs to common memory
areas using a busy location. Each memory area used by more than one
CPU has a busy location assigned to it that must be tested by each
CPU before it can access this area. The busy location either contains
the value "0" or the slot identifier of the CPU currently using the
memory area. This CPU releases the memory areaibyig "0" to

the busy location again when it is finished(Note the explanations

of the operations "set semaphore/SED" and "enable semaphore/SEE"
in Section 3.5.5.).

The CPU tests and sets a busy location on the open page using the
TSC operation.

Operation | Operand Explanation

TSC -32768 to | Add the specified constant to the
+32767 content of the BR register and test and
set the location on the opened page
addressed in this way.

The low byte of the word addressed by the contents of the BR register
+ the constant is used as the busy location. If the content of the low
byte is "0", the TSC operation enters the slot ID (from RS 29) into the
busy location.

Testing (= reading) and setting (= writing) the busy location is one
program unit that cannot be interrupted.

CPU 928B Programming Guide
C79000-B8576-C898-01

Operations with the Base Address Register (BR Register)

Result You can evaluate the result of the TSC operation in condition codes
CCO0and CC 1, as follows:

CC1 CC1 Explanation

0 0 The busy location contains the value "0"; the
CPU enters its slot ID.

1 0 The CPUs own slot ID is already entered in
the busy location.

0 1 The busy location contains a different slot
ID.

Note
All CPUs requiringsynchronized access to a common global
memory area(page area) must use the TSC operation.

Error reaction The location must be on the corresponding module and on the
common page between F F400H and F FBFFH. If this is not the case,
the CPU recognizes a runtime error and caBs32, providing it is
loaded. If OB 32 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L, that define the error

in greater detail (see Section 5.6.2). n

Table 9-10 Operations for access to the pages organized in bytes

Load and transfer
operations for the pages
organized in bytes

Operation | Operand Explanation

LY CB -32768 to | add the specified constant to content of
+32767 the BR register and load the byte in the
opened page addressed in this way into
ACCU-1-LLY ¥

add the specified constant to content of

LY CW -32768 to | the BR register and load the word in
+32767 the opened pa%e addressed in this way
into ACCU-1-L2 ¥

add the specified constant to content
of the BR register and load the double
LY CD -32768 to | word in the opened page addressed i
+32767 | this way into ACCU 1

=

CPU 928B Programming Guide
C79000-B8576-C898-01 9-35

Operations with the Base Address Register (BR Register)

Permissible address area

Error reaction

Operation | Operand Explanation

Table 9-10 continued:

TY CB -32768 to | add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU-1-LL to the byte
addressed in this way in the opened

page.

TY CW -32768 to | add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU-1-L to the word
addressed in this way in the opened

page.

TY CD -32768 to | add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU 1 to the double
word addressed in this way in the
opened page.

1 ACCU-1-LH and ACCU-1-H are set to '0'.
2 ACCU-1-H issetto 0.

8) ACCU 2new: = ACCU g

The absolute address must be as follows:
« forLY CB, TY CB: between F400H and FBFFH
« forLY CW, TY CW: between F400H and FBFEH

« forLY CD, TY CD: between F400H and FBFCH

If the calculated byte address is not in the range shown, the CPU
recognizes a runtime error and c&@lB 31, providing it is loaded. If

OB 31 is not loaded, the CPU goes to the stop mode.

In both cases, error IDs are entered in ACCU-1-L, that define the error
in greater detail (see Section 5.6.2).

CPU 928B Programming Guide
C79000-B8576-C898-01

Operations with the Base Address Register (BR Register)

Load and transfer
operations for pages
organized in words

Table 9-11 Operations for access to the pages organized in words

Operation | Operand Explanation

LW CW -32768 to | add the specified constant to content
+32767 of the BR register and load the word

addressed in this Wa;/ in the opened
page into Accu-1-1!

LW CD -32768 to | add the specified constant to content
+32767 of the BR register and load the double
word addressed in this way in the
opened page into ACcU4

T™W CW -32768 to | add the specified constant to content
+32767 of the BR register and transfer the
content of ACCU-1-L to the word
addressed in this way in the opened

page.

TW CD -32768 to | add the specified constant to content
+32767 of the BR register transfer the
content of ACCU 1 to the double
word addressed in this way in the
opened page.

D ACCU-1-H is set to 0.

2) ACCU 2new: = ACCU g

Permissible address area The absolute address must be as follows:
« forLW CW, TW CW: between F400H and FBFFH

« for LW CD, TW CD: between F400H and FBFEH

Error reaction If the calculated address of the memory cell is not in the range shown,
the CPU recognizes a runtime error and caBs31, providing it is
loaded. If OB 31 is not loaded, the CPU goes to the stop mode.
In both cases, error IDs are entered in ACCU-1-L, that define the error
in greater detail (see Section 5.6.2).

CPU 928B Programming Guide
C79000-B8576-C898-01 9-37

Multiprocessor Mode and 10
Communication

Contents of Chapter 10

10.1

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5

10.2

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8

10.3

10.4

10.4.1
10.4.2
10.4.3
10.4.4

10.5

10.5.1
10.5.2
10.5.3
10.5.4

MURIProcesSor MOEo e e 10-4
When to use the Multiprocessor Modet 10-4
What Communications Mechanisms are Add?. 10-4
Exchanging Data via IPC Flags. e e 10-5
I/O Flag Assignment and IPC Flag Assignment in Multiprocessor Mode (DB 1).... 10-9
How to Create Data BIock DB 1. e 10-9
Multiprocessor Communication.t e 10 - 13
INtrOdUCHION o 10- 13
How the Transmitter and Receiver are Identified. 10- 14
Why Data is Buffered. 10 - 15
How the Buffer i®rocessed and Managed 10- 16
System Start-Up 10 - 19
Calling Communication OBSottt e e 10 - 2
How to Assign Parameters to Communication OBS. 10 - 2 10
How to Evaluate the OutpBarameters.t en 10- 22
Runtimes of the Communication OBS. i 10 - 29
INITIALIZE Function (OB 200)ottt e e e e e e e e 10-31
FUNCHION .. o 10-31
Call Parameters. 10 - 33
INPUIPAraMEtEIS o e 10 - 33
OUtpUt Parameters e e e e 10 - 36
SEND Function (OB 202)ottt e e e e 10 - 38
FUNCHON .. 10 - 38
Call Parameters. 10 - 38
INPUIPAramMEterS o 10 - 38
Output Parameters e e e 10 - 40

CPU 928B Programming Guide
C79000-B8576-C898-01 10-1

Contents

10.6

10.6.1
10.6.2
10.6.3
10.6.4

10.7

10.7.1
10.7.2
10.7.3
10.7.4

10.8

10.8.1
10.8.2
10.8.3
10.8.4

10.9
10.9.1

10.9.2

10.9.3

10 - 2

SEND TEST Function (OB 203).ot e e e 10-43
FUNCHON .. o e e e e e e 10 - 43
Call Parameters.o 10 - 43
INpUIPAraMEterS o 10 - 43
OUutpUt Parameters e e e e 10 - 43
RECEIVE Function (OB 204)ot e e e e e e e 10 - 45
FUNCHON ..o e e e 10 - 45
Call Parameters.o 10 - 45
INPUEPAraM EteIS o 10 - 45
OUtpUt Parameters e e e e e 10 - 46
RECEIVE TEST Function (OB 205)t e e e e 10 - 49
FUNCHON ..o e e 10 - 49
Call Parameters. 10 - 49
INPUIPAraMEterS o 10 - 49
OUtpUt Parameters e e e e 10 - 49
APPICAtiONS . .. o 10-51
Calling the Special Function OB using Function Blocks. 10-51
Programming function blocks. 10 - 52
Transferring Data BIoCKS 10 - 58
Programming FB 110o 10 - 58
Application of FB 110ot 10 - 62
Extending the IPC Flag Area. oo 10 - 64
The problem 10 - 64
The SOlULIONo 10 - 65
Data StrUCIUIe e 10- 65
Structure of the connection list. 10 - 66
Program StruCtUre 10 - 68
Programming function blocks. 10-70
Application example 10-75

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessor Mode and 1 O
Communication

At the beginning of this chapter, you will see when you can use the
multiprocessor mode and which data exchange is possible in this
mode. The chapter provides you with information about programming
for multiprocessor operation (Sectit@.1).

The second part of the chapter provides you with detailed instructions
and examples of exchanging larger amounts of data in the
multiprocessor mode (multiprocessor communication Sections 10.2 to
10.9).

CPU 928B Programming Guide
C79000-B8576-C898-01 10-3

Multiprocessor Mode

10.1 Multiprocessor Mode

Definitions of terms You are in multiprocessor mode as soon as you plug in a coordinator
module, regardless of how man{?QGs or CP/IPs are plugged in.

10.1.1
When to use the » If your user program is too large for one CPU and there is not
Multiprocessor Mode enough memory, distribute your program on several CPUs.

« When a particular part of your system has to be processed
especially fast, separate the appropriate program part from the
total program and run it on its own fast CPU.

« When your system consists of several parts that you can separate
easily and control independently, let CPU 1 process system part 1,
CPU 2 process system part 2, etc.

For more information on multiprocessing, read the information in your

system manual. This will help you to decide which CPUs are best suited

for your problem.
10.1.2
What Communications * "Interprocessor communication flags" are available for cyclic
Mechanisms are Available? exchange of binary data between CPUs (CPU 948, CPU 946/947,

CPU 928B, CPU 928 and CPU 922) or betwe®u€ and
communications processors (CPs).

» For the exchange of large amounts of data (e.g., entire data blocks)
between the CPU 948, CPU 946/947, CPU 928B, CPU 928 and
CPU 922 you are supported by tispecial functions for
multiprocessing" OB 200 to OB205 (for more information refer
to Section 10.2).

CPU 928B Programming Guide
10-4 C79000-B8576-C898-01

Multiprocessor Mode

10.1.3
Exchanging Data via IPC
Flags

Memory area

Jumper settings

CPU 928B Programming Guide

C79000-B8576-C898-01

Interprocessor communication (IPC) flags are available for cyclic
exchange of binary daf@hey areused maly for transmiting
informationbyte by byte.

Data is transferred as follows:
CPU(s) - CPU(s)
CPU(s) o Communications processor(s)

The system program transfers IPC flags once per cycle. For data
transfer between CPUs, the IPC flags are buffered physically on the
coordinator.

IPC flags are bytes that are transferred. You define them in DB 1 for
each CPU as IPC input or output flags. If, for example, you have
defined flag byte 50 on the CPU 1 as an tRed@ut flag byte, its

signal state is transferred cyclically via the coordinator to the CPU on
which the flag byte FY 50 is defined as an lirgut flag byte (see
Section 10.1.5).

Note

There isno error message when the IPC flag byte exists
physically but is only written by one CPU and never read out and
vice-versa.

With the CPU 948 the memory area for the IPC flags in the
coordinator and the CPs covers the address#H to F F2FFH.

On a CPU/communications processor there are 256 available IPC flag

To avoid double assignments you must group the 256 available IPC
flag bytes on the COR or CP modules. Fields of 32 bytes can be
enabled or disabled (your system manual contains information about
setting the jumpers).

10-5

Multiprocessor Mode

Exam

ple

CpPU 1

IPC output flags:
FY 96 to FY 119

IPC input flags:
FY 120 to FY 125

Write

Coordinator

CPU 2

IPC output flags:
FY 120 to FY 125

IPC input flags:
FY 96 to FY 119

Read

Write

Fig. 10-1

10-6

Read

Transferring IPC flags in the multiprocessor mode

Note

Enabled area
per jumpers:

IPC flag bytes
FY 96 to FY 127

- The only flag bytes that you can specify as IPC flags are the
enabled on the coordinator or on the CP(s).

- Aflag byte that is defined on one or more CPUs as aiifi€
flag byte must be defined as an 1B@put flag byte on one other
CPU or CP. AnP C output flag byte is only dlowed onone CPU,
but this may be used as an IPC input flag in all other CPUs in t

rack.

- Ifyou have flag bytes that you have not defined as IPC flags in
CPU, you can use them as normal flags!

You cannot use S flags as IPC flags!

CPU 928B Programming Guide

C79000-B8576-C898-01

ones

ne

Multiprocessor Mode

Data exchange between If you want to exchange data between one CPU and one CP, you must
CPUs and communication enable the necessary number of IPC flags on the CP. You have 256
processors bytes available that you can divide into groups of 32 bytes.

If you want to transfer data from one CPU to several CPs, the areas you
enable in the CPs and the coordinator masbverlap, otherwise the
same address is assigned twice.

If you want to use IPC flagsmultaneouslyon the coordinator and in

one or more CPs, you must also prevent double addressing as follows:
Divide the IPC flags among the coordinator and the CPs in groups of
32 bytes. Remove jumpers on the coordinator to mask the IPC flag
bytes thatyou want to use in the CP (refer to the System Manual).

You can define a specific flag byte as an IPC output flag &4CPU
only. However, you can define aesjific flag byte as in IP@put flag in
several CPUs.

Example
CPU 1 CP 1
cPp 1 Enabled area:
IPC output flags: >
CP 1. FY 96 to FY 119 ::PYCgféaEtJ bl):/{(esl27
CP 2: FY 201 to FY 205 CP 2 0
CP 2
g Enabled area:
i . CpP 1 IPC flag bytes
IPC input flags: <
CP 1: FY 120 to FY 125 cp 2 FY 192 to FY 223
CP 2: FY 195 to FY 200 <

Fig. 10-2 Example of IPC flag areas on the CPs

CPU 928B Programming Guide
C79000-B8576-C898-01 10-7

Multiprocessor Mode

Transmitting IPC flags in
multiprocessor operation

Multiprocessor
communication

10-8

At the end of each program cycle, along with the updating of the
process image, the CPU transmits the IPC flags specified in DB 1
when the coordinator signals the CPU that it can access the S5 bus.

The coordinator allocates the bus enable signal to each CPU in
sequence. When a CPU has access to the S5 bus, it can transmit only
onebyte. Because of this interleaved transmission, related (byte
groups) IPC flag information can be separated and subsequently
processed with old or incorrect values.

If you want to transfer information that takes up more than one byte,
you can prevent corruption of data by setting a parameter in extended
data block DX 0. This parameter uses semaphores to ensure that all
IPC flags specified in DB 1 are transferred in groups (see Chapter 7).
While one CPU is transmitting IPC flags, another CPU cannot
interrupt it. Because the next CPU has to wait to transmit its data,
cyclic program processing of this CPU is delayed accordingly.

For transferring data blocks or more exactly fields of data with a size
of max. 64 byte (= 32 data words), the following special functions are
integrated in the CPU:

« OB 200: INITIALIZE: preassign

» OB 202: SEND: send a datafield

e« OB 203: SEND TEST: test sending capacity
» OB 204: RECEIVE: receive a data field

» OB 205: RECEIVE TEST: test receiving capacity

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessor Mode

10.1.4
I/O Flag Assignment and The I/O area of the programmable controller is available @mndeon
IPC Flag Assignment in the S5 bus. The 1/0 area encompasses the addrexss@s to

Multiprocessor Mode (DB 1) FFFFH.

In multiprocessor mode, all CPUs in the programmable controller
access this 1/0 area "simultaneously”. To avoid data being
overwritten, the I/O area must be divided between the individual
CPUs.

For this purpose, you must progr&B 1 for every CPU. In DB 1
you define thénputs and autputs (byte addresses 0 to 127) ard
flag inputs and outputseach CPU is to work with.

If the CPU does not use any 1/O or IPC flags, an (empty) DB 1 must

still be available in multiprocessor mode.

Note
Only the input and output bytes defined in DB 1 will be taken into
account during updating of the process I/O image by each CPU.

10.1.5

How to Create Data Block

DB 1

Inputting or changing DB 1 e Create/modify DB 1 on the PG using the DB 1 screen form

or
» by editing DB 1 as a data block on the PG and then transferring it
to the CPU.

Note
The CPU evaluates the entered or changed Didylafter a cold
restart!

Using the DB 1 screen form 1. Select the editor for the DB 1 screen form on your PG
(refer to Fig. D-3).

2. Enter the required values for "digital inputs" etc. as decimal
numbers.

CPU 928B Programming Guide
C79000-B8576-C898-01 10-9

Multiprocessor Mode

3. Enter the values by pressing the enter key on the PG.
The PG then generates DB 1.

4. Transfer DB 1 to the CPU or load it into an EPROM sodbnte.
Note
You can specify the timer field length in DX 0 and/or in the DB

screen form. We recommend that you specify this parameter oply
in DX O (see Chapter 7).

Example of the DB 1 screen

form

4 DB 1 I/O assignment: R
Digital inputs: .01 2 3 7,10,
Digital outputs: v 0,02, 4,12, v
IPC flag inputs: .90, 51,60, , ., ., ., . .
IPC flag outputs: , 10, 72100,
Timer field length: .

- J

Fig. 10-3 PG screen form for generating DB 1

Editing DB 1 as a data block 1. Write the DB 1 start ID in data words 0, 1 and 2:

DWO: KH=4D4l (M 'A)
DW1: KH=534B (S 'K)
DW2: KH=3031 (0 '1)

CPU 928B Programming Guide
10-10 C79000-B8576-C898-01

Multiprocessor Mode

2. Type in the individual operand areas (from data word 3 onwards).
Before each operand area, you musti#pan ID. The possible ID
words are as follows:

ID word for digital inputs KH = DEOQO
ID word for digital outputs KH = DAOO
ID word for IPC input flags KH = CEOO
ID word for IPC output flags KH = CA00

After each ID word, use fixed-point format to list the numbers of the
inputs and outputs used.

3. Complete the entries with the DB 1 end ID "KH = EEEE" and
transfer DB 1 to the CPU.

Note

You can make the DB 1 entries in any order. Remember that the
process image of the inputs and outputs is updated iethese
order to which you store theddresses in DB Xi.e. the last

entry is updated first).

Multiple entries of the same bytes (e.g., for test purposes) are
possible. The system program makes multiple updates of the process
images of bytes that are entered more than once.

Example of editing DB 1

DB1 FD: CPU948ST.S5D

0: KH =4DA41; DW 0-2:

1 KH = 534B; Start ID

2: KH =3031; for DB 1

3 KH = DEQO; ID word for digital inputs
4. KF = +00000; Input byte O

5: KF = +00001; Input byte 1

6: KF = +00002; Input byte 2

7 KF =+00003; Input byte 3

8: KF =+00007; .

9: KF =+00010; Input byte 10

10: KH = DAQQ; ID word for digital outputs
11: KF =+00000; Output byte 0

12 KF =+00002; Output byte 2

13: KF = +00004; .

14: KF =+00012; Output byte 12

15: KH = CEOQQ; ID word for IPC flag inputs
16: KF = +00050; Flag byte 50

17 KF = +00051; .

18: KF = +00060; Flag byte 60

19: KH = CAQQ; ID word for IPC flag outputs
20: KF = +00070; Flag byte 70

21 KF =+00072; .

22: KF =+00100; Flag byte 100

23: KH = EEEE; End ID

24:

CPU 928B Programming Guide
C79000-B8576-C898-01 10-11

Multiprocessor Mode

Entering DB 1

10-12

The system program adopts DB 1 during a cold restart. The system
program checks to see if the inputs and outputs or IPC flags indicated
in DB 1 exist in their corresponding modules. If they are not present
there, a DB 1 error causes the CPU to go into the STOP mode and the
STOP LED flashes slowly. The CPU no longer processes your
program.

After you program DB 1 and the CPU accepts it during a cold restart,
the following rules apply:

« Only the inputs and outputs indicated in DB 1 can access peripheral
modules via the process images (L.../T... ... B, ...IW, ...ID, ...QB,
...QW, ...QD operations and logic operations with inputs and outputs).
Access to process image addresses not entered in DB 1 cause
addressing errors.

» You canload peripheral bytes directly by bypassing the process
image using the L PY, L PW, L OY, L OWperations for all
acknowledging inputs, regardless of entries in DB 1.

e You cantransfer directly (T PY, T PW) to bytes 0 to 127 only for the
outputs indicated in DB 1. This is because the process image is also
written to during direct transfer. Writing to 1/O addresses not entered
in DB 1 causes an addressing error.

e Transfer without a process mage:
Direct transfer to byte addressel?7is possibleegardless of
the entries in DB 1
Direct transfer of byte addresses of the extended 1/0s (T OY,
T OW) is also possible regardless of the entries in DB 1.

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessor Communication

10.2 Multiprocessor Communication

Definition

10.2.1
Introduction

Required knowledge

Basic sequence

Length of data fields
transferred

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessokcommunication means the exchange of larger
amounts of data (data blocks) between CPUs operating in the
multiprocessor mode. The COR 923C coordinator is necessary for
multiprocessor communication.

To transfer data blocks, or to be more precise, blocks of data with a
maximum length of 64 bytes (= 32 data words), you can use the
following special functions that are integrated in the CPU:

« OB 200: INITIALIZE: preassign

» OB 202: SEND: send a field of data

e« OB 203: SEND TEST: test sending capacity
» OB 204: RECEIVE: receive a data field

» OB 205: RECEIVE TEST: test receiving capacity

The special function OBs, OB 200 and OB 202 to OB 205 are simply
called "communication OBs" in the following sections.

To use these functions, you only require basic knowledge of the
STEP 5 programming language and the way in which SIMATIC S5
programmable controllers operate. You can obtain this basic
information from the publications listed in "Further Reading".

To transfer data, you must activate the SEND function on the

transmitting CPU and the RECEIVE function on the receiving CPU.
The data words of a DB or DX data block located in the transmitting
CPU are transported via the coordinator 923C to the receiving CPU
one after the other and written to the DB or DX data block with the
same number and under the same data word address; i.e. this
represents a"1:1" copy operation.

The amount of data that can be transferred with the SEND and
RECEIVE functions is normally 32 words.

If the block length (without header) is not a multiple of 32 words, the
last field of data to be transferred is an exception and is less than 32
words long.

10-13

Multiprocessor Communication

The data block in the receiving CPU can be longer or shorter than the
data block to be sent. It is, however, important that the data words
transferred by the SEND function exist in the receiving block;
otherwise the RECEIVE function signals an error.

Example:
Data to be Data
sent in the received
transmitting in the
CPU: receiving
CPU:
Data block: DB 17 DB 17
Data word address DW32toDW 63 DWW 32to DW 63
10.2.2
How the Transmitter and Each field of data exchanged between the CPUs is marked with a
Receiver are ldentified number to indicate the source and destination CPU.
The CPUs are numbered so that the leftmost CPU has the number 1
and each subsequent CPU to the right has a number increased by 1.
Example

S5-135U/155U:

(. [

)7
C C c C C C 1
o P P P P P | | 1 Q Q M
R U U U
C 1 2 3

(. [

77

Fig. 10-4 Sender/receiver identification

CPU 928B Programming Guide
10- 14 C79000-B8576-C898-01

Multiprocessor Communication

10.2.3
Why Data is Buffered

Example

Generally, the multiprocessor mode is used to distribute tasks on
several CPUs. Since the tasks are not identical and the performance of
the CPUs involved can be different, the program execution of the
individual CPs in the multiprocessor mode is alwaygnchronous

This means that the data sent by a CPU cannot always be received
immediately by another CPU.

For this reason, the data to be transferred is buffered on the
coordinator 923 C. The number of the CPU executing the task and the
number of the sender when receiving and the receiver when sending
define the source or the destination of a data field.

Data transfer from CPU 3 to CPU 2:

1st step:
i SEND, parameter of receiving (CP[U =2
J)
C C C Cc C C |
o} P P P P P | | | Q Q M
R U U U
C 1 2 3
(. [
J)

CPU 3 buffers its data on the coordinator.

2nd step:

RECEIVE, parameter of transmitting(Cl?U =3

0
clcl|c|c c|c |
olpP|P |P P | P Lo Q1 Q| wm
R|U| U |uU
cl1]2 |3

[. [

)

When CPU 2 is ready to receive, it copies the data from the coordinator

buffer to the destination DB.

CPU 928B Programming Guide
C79000-B8576-C898-01

10-15

Multiprocessor Communication

10.2.4
How the Buffer is
Processed and Managed

Principle

Data protection

Management

10- 16

The buffer is based on the FIFO principle (first in - first out, queue
principle). The data is received in the order in which it is sent. This
applies to each individual link (identified by the transmitting and
receiving CPU) and is independent of other links.

The buffer is battery-backed; this means that the "automatic warm
restart following a power down" is possible without any restrictions.

A loss of power during a data transfer does not cause any loss of data
in the programmable controller.

The coordinator 923 C has a memory capacity of 48 data fields each
with a fixed length of 32 words. The INITIALIZE function assigns
these fields to individual CPU links.

Eachmemory field can receive exactly oriield of data. The length

of the data can be from 1 data word to 32 data wordistéfield is
entered in anemory field by a SEND function and read out again by

a RECEIVE function.

The number of memory fields assigned to a link is directly related to the
parameters for the transmitting caipa(SEND, SENDTEST function)

and receiving capacity (RECEIVE, RECEIVE TEST function).

Thetransmitting capacity indicates how many of the memory fields
reserved for a link are free at any particular time.

Thereceiving capacityindicates how many of the memory fields
reserved for a link are occupied at any particular time.

The sum of the transmitting and receiving capacity is always equal to
the number of memory fields reserved for a link.

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessor Communication

Example

Occupation of the buffer by a link
The link between CPU 3 and CPU 2 is initialized. The link is assigned

seven memory fields in the buffer of the coordinator. Following this,
the data transfer shown below would be possible.

Transmitting capacity

(no. of free
memory fields)
b initialize send send 4 fields send 4 fields send 2 fields
field A B, C, D, E F, G H

7

6 —]

5 —

4 —

Transmitter: CPU 3

3 —

2 —

1 —

7 6 2 4 0 5 5 7
0 > Time
0 1 5 3] 7 2 2

l pu—

2 —|

3 —

Receiver: CPU 2

4 —

5 p—

6 —

7 —

receive receive receive receive
4 i fields A, B fields C, D, fields H, | fields K, L

Receiving capacity EF G
(no. of free

memory fields)

Fig. 10-5 Example of the occupation of the COR buffer

Sending/receiving n data fields means that the corresponding functions
are called n times one after the other.

To simplify the representation, at any one time, data can either be sent

or received in this example.

It is, however, possible and useful to transmit (CPU 3) and receive (CPU
2) simultaneously ("Parallel processing in a multiprocessor programmable
controller"). In the example, fields H and | are received while fields K

and L are sent.

The example illustrates the queue organization of the buffer: the fields
of data sent first (A,B,C...) are received first (A,B,C...).

CPU 928B Programming Guide
C79000-B8576-C898-01

10 - 17

Multiprocessor Communication

Summary

10-18

Buffering data on the coordinator COR 923C allows the asynchronous
operation of transmitting and receiving CPUs and compensates for
their different processing speeds.

Since the capacity of the buffer is limited, the receiver should check
"often" and "regularly" whether there are data in the buffer

(RECEIVE TEST function, receiving capacity > 0) and should

attempt to fetch stored data (RECEIVE function). Ideally, the

RECEIVE function should be repeated until the receiving capacity is
zero. This means that the transmitted data are not buffered for a longer
period of time and that the receiver always has the current data. This
also means that memory fields remain free (the transmitting capacity

is increased) and prevents the sender from being blocked (i.e. when
the transmitting capacity is zero).

Note

A receiving capacity of zero represents the ideal state (i.e. all
transmitted data have been fetched by the receiver), on the other
hand a transmitting capacity of zero indicatesrrect
planning, as follows:

- the SEND function is called too often,

- the RECEIVE function is not called often enough
or

- there are not enough memory fields assigned to the link.
The capacity of the buffer is insufficient to compensate tempo-

rary imbalances in the frequency with which thel trans-
mit and receive data.

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessor Communication

10.2.5
System Start-Up

COLD RESTART

WARM RESTART

CPU 928B Programming Guide
C79000-B8576-C898-01

If you require multiprocessor communication, then all CPUs involved
must go through theame STOP-RUN transition (= RESTART), i.e.

all the CPUs go through a COLD RESTART or all CPUs go through a
WARM RESTART.

You must make sure that the restart of at least all the CPUs involved
in the communication igniform in the following ways:

« direct operation (front switch, programmer),
» parameter assignmefi2X 0)
and/or

e programming (using the spatfunction organization block OB 223
"stop if non-uniform restarts occur in the multiprocessor mode")

In organization block OB 20 (COLD RESTAR®)ly one CPU must
set up the buffer (in the COR 923C) using the INITIALIZE function.
Any existing data is lost.

Following this, i.e. during the RESTART, you can call the SEND,
SEND TEST, RECEIVE, RECEIVE TEST functions in the individual
CPUs. Withappropriate programming, you must make sure that this
only occurs after the buffer in the coordinator has been correctly
initialized.

On completion of the RESTART, i.e. in the RUN mode, the user
program is processécbm the beginning, i.e. from the first operation
in OB 1orFBO.

You mustnot use the INITIALIZE function in the organization

blocks OB 21 (MANUAL WARM RESTART) and OB 22 10
(AUTOMATIC WARM RESTART). Calling the SEND, SEND

TEST, RECEIVE, RECEIVE TEST functions can cause problems

(refer to the following sections).

On completion of the WARM RESTART, i.e. in the RUN mode, the
user program is not processed from the start, but fromdine at

which it was interrupted. The point of interruption can, for example,
be within the SEND function.

10-19

Multiprocessor Communication

10.2.6
Calling Communication OBs

Double call

Parallel processing

Areas occupied

10-20

Proceed as follows:

1. Call the INITIALIZE function only in the cold restart
organization block OB 20 on one CPU.

2. Callthe SEND, SEND TEST, RECEIVE, RECEIVE TEST
functions eithepnly within the cyclic program asnly within the
time-driven program.

Depending on the assignment of parameters in DX O ("interrupts at
operation boundaries"), and the type of program execution (WARM
RESTART, interrupt handling, e.g. OB 26 for cycle time error) itis
possible that one of the functionsITML IZE, SEND, SEND TEST,
RECEIVE and RECEIVE TEST can be interrupted.

If a user interface inserted at the point of interruption also contains one of
the functions SEND, SEND TEST, RECEIVE and RECEIVE TEST
illegal call (double calljs recognizedand an error is signalled (error
number 67, Section 10.2.8).

Once you have completed the assignment of the buffer (INITIALIZE
function), you can execute the functions SEND, SEND TEST,
RECEIVE and RECEIVE TEST in any combination and with any
parameter assignment in all the CPUs simultaneously and parallel to
each other.

Taking a single link (e.g. from CPU 2 to CPU 3) it is possible to
execute the SEND function (CPU 2) and the RECEIVE function
(CPU 3) simultaneously. While CPU 2 is sending data fields to the
coordinator, CPU 3 can already receive (fetch) buffered data fields
from the coordinator.

The communication OBs do not require a working area (for buffering
variables) and do not call data blocks. They do, of course, access areas
containing parameters, although only the parameters marked as output
parameters are modified.

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessor Communication

Results bits The results bits (CC 1/CC 0, RLO etc.) are influenced by the
communication OBs. For more detailed information refer to
Section 10.2.8.

Changes in the ACCUs « CPU 922, CPU 928,
CPU 928B: The contents of ACCU 1 to ACCU 4 and the
contents of the registers are not affected by
the communication OBs.

e CPU 946/947,
CPU 948: The contents of all registers and ACCU 1, 2
and 3 remain the sanmanly the contents of
ACCU 4 are affected.

10.2.7
How to Assign Parameters
to Communication OBs The communication OBs have the following types of parameter:

e input parameters,

e output parameters
and

« call parameters.

Input and output parameters are located in a maximum 10 byte long
data field in the F flag area The datafield is divided into an area for
input parameters and an area farutput parameters.

the parameters are read out by communication OBs and evaluated, no

Input parameters The input parameters specify how a function is handled. All or part of
write access takes place.

Output parameters The output parameters contain all the information that the calling
program needs about the result of a job, e.g. error bits.
Some or all of the output parameters are written to by the
communication OBs, this area is not read.

Note

You can assiga flag area with 10 flag bytedor all
commnunications functions. The functions themselves require
different numbers of bytes. Refer to the description of the single
functions (Section 10.4ff).

CPU 928B Programming Guide
C79000-B8576-C898-01 10-21

Multiprocessor Communication

Call parameters For all communication OBs the number of the first flag byte in the
data field (= pointer to data field) in ACCU-1-L is transferred as the
call parameter. Permitted values are 0O to 246.

Example

Data field with parameters for the RECEIVE function

(OB 204)
FY x + 0: transmitting CPU input parameter
FY x +1: — not used
FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter
FY x+ 4: block ID output parameter
FY x +5: block number output parameter
FY x + 6: address of the first output parameter
FY x + 7: received data word output parameter
FY x + 8: address of the last output parameter
FY x + 9: received data word output parameter

This example illustrates that the number of the first F flag byte in the
data field must not be higher than FY 246, since otherwise the parameter
field of up to 10 bytes would exceed the limits of the flag area

(FY 255).
10.2.8
How to Evaluate the Among other things, the output paraerstindicate whether or not a
Output Parameters function could be executed and if not they indicate the reason for the
termination of the function.
Condition codes The INITIALIZE, SEND, SEND TESTRECEIVE and RECEIVE

TEST functions affect the condition codes (see programming instructions
for your CPUS, general notes on the STEP 5 operations):

» the OV and OS bits (word condition codes) are always cleared,
« the OR, STA, ERAB bits (bit condition codes) are always cleared,

« RLO, CC 1 and CC 0 indicate whether a function has been executed
correctly and completely.

CPU 928B Programming Guide
10-22 C79000-B8576-C898-01

Multiprocessor Communication

Table 10-1 Condition codes of the communication OBs

Condition codes

Evaluation Meaning
RLO CC1l cCcCoO
0 0 0 JC= Function executed
completely and correctly
1 0 0 JC= Function aborted,
pointer to data field
illegal (>246)

Function aborted
owing to an initialization

conflict
1 0 1 JC= and |Function aborted
JM= owing to an error
(error number 1 to 9)
1 1 0 JC= and |Function aborted
JP= owing to a warning

(warning number 1 or 2)

In the following sections, it is assumed that the pointer to the data
field contains a correct value.The first byte of the output parameter
provides detailed information about the cause of termination.

Condition code byte
Bitno., 7 | 6 5| 4 3| 2| 1 0

W E I 0 Number
W=1: Warning
E=1: Error
=1 Initialization conflict
Number: - of a warning
- of an error

- of an initialization conflict

CPU 928B Programming Guide
C79000-B8576-C898-01 10- 23

Multiprocessor Communication

The first byte in the field of the output parameters (condition code
byte) also indicates whether or not a function has been correctly and
completely executed. This byte contains detailed information about
the cause of termination of a function.

Assuming that at least the pointer to the data field contains a correct
value, this byte ialwaysrelevant.

If the function has been executed correctly and completely, all the bits
are cleared (= 0), and all other output parameters are relevant.

If the function is aborted with a warning (bit number 7 = 1), only the
condition code for the transmitting/receiving capacity is relevant,
other output parameters (if they exist) are unchanged.

If the function is aborted owing to an error (bit number 6 = 1) or an
initialization conflict (bit number 5 = 1), all other output parameters
remain unchanged.

Evaluation of the code byte The identifiers 'W’, 'E’ and ’I’ indicate the significance of the
numbers.
Apart from this bit-by-bit evaluation, it is also possible to interpret the
whole condition code byte as a fixed point number without sign. If
you interpret the condition code byte dsyge, the groups of numbers
have the following significance:

Table 10-2 Code byte for the communication OBs/number groups

Number group Significance
0 Function executed correctly and completely
3310 42 Function aborted owing to an initialization
conflict
6510 73 Function aborted owing to an error
129to 130 Function aborted owing to a warning

Errors are detected and indicated in the ascending order of the error
numbers. This means that several errors may have occurred although
(currently) onlyoneis indicated. The other errors are then indicated by
further calls.

CPU 928B Programming Guide
10- 24 C79000-B8576-C898-01

Multiprocessor Communication

Example The SEND function indicates an error and is not

executed. If you then make program and/or
parameter modifications and the SEND function
again indicates an error with a higher number
than previously, you can assume that you have
corrected one of several errors.

Initialization conflict An initialization conflict can only occur with the INITIALIZATION
function. If a conflict occurs, you must modify the program or the
parameters.

Initialization conflict numbers (evaluation of the condition code byte
as a hyte):

Table 10-3 Condition code byte: Initialization conflict numbers

Cond. Significance
code
byte

33 The pages required for multiprocessor communication
(numbers 252 to 255) are not or not athitable.

34 The pages required for multiprocessor communicatior
(numbers 252 to 25%e defective.

35 The parameter "automatic/manual" is illegal.
The following errors are possible:

- the "automatic/manual” ID is less than 1,

- the "automatic/manual” ID is greater than 2.

36 The parameter "number of CPUs" is illegal.
The following errors are possible:

- the number of CPUs is less than 2,

- the number of CPUs is greater than 4.

37 The parameter "block ID" is illegal.
The following errors are possible:

- the block ID is less than 1,

- the block ID is greater than 2.

38 The parameter "block number" is incorrect, since it is a data
block with a special significance.
The following errors are possible:
- if block ID =1 DB0,DB1,DB?2
-ifblockID =2: DX0,DX1,DX2

39 The parameter "block number " is incorrect, since the data
block does not exist.

40 The parameter "start address of the assignment list" is too
high or the data block is too short.

CPU 928B Programming Guide
C79000-B8576-C898-01 10- 25

Multiprocessor Communication

Cond.
code
byte

Significance

Table 10-3 continued:

41 The assignment list in the data block is not correctly
structured.
42 The sum of the assigned memory fields is greater than 48.
Errors If an error occurs, you must change the program/parameters.

Error numbers (evaluation of the condition code byte as a byte):

Table 10-4

Condition code byte: Error numbers

Cond.
code
byte

Significance

65

The parameter "receiving CPU" (SEND, SEND TEST)
is illegal. The following errors are possible:
- The number of the receiving CPU is greater than 4,
- the number of the receiving CPU is less than 1,
- the number of the receiving CPU is the same as the
CPU’s own number.

66

The parameter "transmitting CPU" (RECEIVE, RECEIVE
TEST) is illegal. The following errors are possible:
- The number of the transmitting CPU is greater than
- the number of the transmitting CPU is less than 1,

41

- the number of the transmitting CPU is the same as the

CPU'’s own number.

67

The special function organization block call is wrong
(SEND, RECEIVE, SEND TEST, RECEIVE TEST). The
following errors are possible:

- Secondary error, since thellNALIZE f unction could
not be called or was terminated by an initializatig
conflict.

Double call: the call for this function (SEND, SEND
TEST, RECEIVE or RECEIVE TEST) is illegal,
since one of these functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower
processing level (i.e. cyclic program execution).
The CPU’s own number is incorrect (system data
corrupted); following power down/power up the C

number is generated again by the system program.

10 - 26

CPU 928B Programming Guide
C79000-B8576-C898-01

Multiprocessor Communication

Cond.
code
byte

Significance

Table 10-4 continued:

68

The management data (Qqueue management) of the
selected links are incorrect; set up the buffer in the

coordinator 923C again using the INITIALIZE function
(SEND, RECEIVE, SEND TEST, RECEIVE TEST).

69

The parameter "block ID" (SEND) or the block ID provided

by the sender (RECEIVE) is illegal. The following errors jare

possible:
- The block ID is less than 1,
- the block ID is greater than 2.

70

The parameter "block number" (SEND) or the block number

supplied by the sender (RECEIVE) is illegal, since it is a

block with a special significance. The following errors are

possible:
- If the block ID=1: DB0,DB 1, DB 2

- if the block ID=2: DXO0,DX1,DX2

71

The parameter "block number" (SEND) or the block num
provided by the sender (RECEIVE) is incorrect. The
specified data btk does not exist.

72

The parameter “field number" (SEND) is incorrect.
The data block is too short or the field number too high.

73

The data block is not large enough to receive the data fi

data

n)

1ber

eld

transmitted by the sender (RECEIVE).

CPU 928B Programming Guide
C79000-B8576-C898-01

10 - 27

Multiprocessor Communication

Warning The function could not be executed; the function call must be
repeated, e.g. in the next cycle.

Warning numbers (evaluation of the condition code byte as a byte):

Table 10-5 Condition code bytes: Warning numbers

Cond. Significance
code
byte

129 | The SEND function cannot transfer data, since the
transmitting capacity was already zero when the
function was called.

130 | The RECEIVE function cannot accept data, since the
receiving capacity was already zero when the function
was called.

CPU 928B Programming Guide
10 - 28 C79000-B8576-C898-01

Runtimes of the Communication OBs

10.3 Runtimes of the Communication OBs

The "runtime" is the processing time of the special function
organization blocks; the time from calling a block to its termination
can be much greater if it is interrupted by higher priority activities

(e.g. updating timers, etc.).

Table 10-6 Runtimes of the communication OBs
Special function OB
Block CPU 922 CPU 928 CPU 928B CPU 946/ CPU 948
name 947
OB 200/ 230 ms 130 ms 130 ms 128 ms 90 ms
initialize
OB 202/ 806us (294us | 666us (250us | 696ps (280us | 762us (426us | 542us (220us
send basic time basic time basic time basic time basic time
+ 16pus/word); | + 13us/word); | + 13 us/word); + 21ps/ + 19ps/
118pusifa 115psifa 145psif a | double word);| double word);
warning occursvarning occurswvarning occurs 243ps if a 110psifa

warning occur

svarning occur

warning occur

OB 203/ send test 72ps 50ps 80us 207us 115ps
OB 204/ receive 825us (281us | 660us (244us | 690us (274us | 772us (421us | 506us (218us
basic time basic time basic time basic time basic time
+ 17 psiword);| + 13us/word); | + 13us/word); +22ps/ + 18ps/
115psifa 98usif a 128usif a | double word);| double word);
warning occursvarning occursvarning occurs 243ps if a 132psifa

svarning occur

OB 205/
receive test

70pus

48us

78 us

223ps

120us

The runtimes listed in Table 10-6 assume that of four CPUs inserted
in a rack, only the CPU whose runtimes are being measured accesses

the SIMATIC S5 bus. If other CPUs use the bus intensively, the
runtime increases particularly for the send/receive functions.

CPU 928B Programming Guide

C79000-B8576-C898-01

10-29

Runtimes of the Communication OBs

Transfer time

10-30

An important factor of a link (e.g. from CPU 1 to CPU 2) is the total
data transfer time. This is made up of the following components:

» time required to send (see runtime),

« length of time the data are buffered (on the COR 923C coordinator)
and

» the time required to receive data (see runtime)

The length of time that the data are "in transit" is largely

dependent on the length of time that the data iduffered and

therefore onthe structure of the user program (see "Buffering
Data").

CPU 928B Programming Guide
C79000-B8576-C898-01

INITIALIZE Function (OB 200)

10.4 INITIALIZE Function (OB 200)

10.4.1

Function To transfer data from one CPU to another CPU, the data must be
temporarily buffered. The INITIALIZE function sets up a buffer on
the COR 923C coordinator.
The memory is initialized in fields with a fixed length of 32 words.

Each memory field accepts one data field with a length between 1 data
word and 32 data words. A data field is entered in a memory field by a
SEND function and read out by a RECEIVE function.

If you are using two CPUSs, there are two links (transfer directions,
"channels"):

CPU 1 CPU 2

If you are using three CPUs, there are six links:

CPU 1 CPU 2

CPU 3

CPU 928B Programming Guide
C79000-B8576-C898-01 10-31

INITIALIZE Function (OB 200)

If you are using four CPUs, there are twelve links:

CPU 1 CPU 2

CPU 3 CPU 4

The INITIALIZE function specifies how the total 48 available

memory fields are assigned to the maximum twelve links.

This means that each possible link, specified by the parameters
"transmitting CPU" and "receiving CPU" has a certain memory capacity
available.

Note

Before you can call the SEND / RECEIVE / SEND TEST /
RECEIVE TEST functions, one CPU must have already called th
INITIALIZE function and executed it completely and without errors.

If the INITIALIZE function is called several times, one after the
other, the last assignment made is valid. While a CPU is processing
the INITIALIZE function, no other multiprocessor communication
functions including the INITIALIZE function can be called on other
CPUs.

CPU 928B Programming Guide
10-32 C79000-B8576-C898-01

INITIALIZE Function (OB 200)

10.4.2
Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.4.3
Input Parameters

Mode (automatic/manual)

Number of CPUs

CPU 928B Programming Guide
C79000-B8576-C898-01

Before calling OB 200, you must supply the input parameters in the
data field. OB 200 requires eight F flag bytes in the data field for
input and output parameters:

FY x + 0: Mode (automatic/

manual) input parameter
FY x + 1: Number of CPUs input parameter
FY x + 2: Block ID input parameter
FY x + 3: Block number input parameter
FY x + 4: Start address of the input parameter

FY x + 5:] | assignment list
FY x + 6: Condition code byte outpparameter

FYXx+7: Total capacity output parameter

When OB 200 is called, you transfer the flag byte number at which
the parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0to 246
Mode = 1: automatic

Mode = 2: manual

Mode = 0 or 3 to 255: illegal, causes an

initialization conflict

This parameter is only relevant when you have selected the
"automatic" mode. With the "automatic" setting, the memory fields
are dividecevenly according to the number of CPUs.

Number of Number of Memory fields per
CPUs links link
2 2 24
3 6 8
4 12 4
0; 1; 5to 255 lllegal, causes an initialization conflict
10 - 33

INITIALIZE Function (OB 200)

Block ID, block number,
address assignment list

Block ID

Block number

Start address of the
assignment list

10 - 34

The parameters are only relevant if you select the "manual’ mode.
You must then create an assignment list in a data block in which the
48 available memory fields (or less) are assigned to the maximum 12
links. This function is partically useful when som€PUs transfer

more data than others.

The CPUs not involved in the multiprocessor communication do not
need and should not have memory fields assigned to them.

The parameters

» block ID,
e block number
and
» start address of the assignment list

specify where the assignment list is stored.

ID=1: DB data block
ID=2: DX data block
ID=0or3to 255: illegal, causes an

initialization conflict

For the block number, you specify the number of the DB or DX data
block in which the assignment list is stored.

Along with the block ID and number, this specifies the area (or more
precisely, the start address of the area) in the data block in which the
assignment list is stored.

As the address of the assignment list, specify the data word number at
which the assignment list begins in flag bytes FY x+4 (high byte) and
FY x+5 (low byte).

CPU 928B Programming Guide
C79000-B8576-C898-01

INITIALIZE Function (OB 200)

Assignment list With the asfgnment list, you specify how many thie existing 48
memory fields are to be assigned to the links.

The list isnot changedby the system program. It has the following

structure.

Table 10-7 Assignment list for OB 200 (initialize)

Data word Format Value Significance
DW n+ O KS S1 Transmitter =CPU 1
DW n+ 1 KY 2,a Receiver =CPU 2
DW n+ 2 KY 3.b Receiver =CPU3
DW n+ 3 KY 4, c Receiver =CPU4
DW n+ 4 KS S2 Transmitter = CPU 2
DW n+ 5 KY 1,d Receiver =CPU1
DW n+ 6 KY 3.,e Receiver =CPU 3
DW n+ 7 KY 4 f Receiver =CPU4
DW n+ 8 KS S3 Transmitter =CPU 3
DW n+ 9 KY 1,9 Receiver =CPU1
DW n+ 10 KY 2,h Receiver =CPU 2
DW n+11 KY 4 Receiver =CPU4
DW n+ 12 KS S4 Transmitter = CPU 4
DW n+13 KY 1.,k Receiver =CPU1
DW n+14 KY 2,1 Receiver =CPU 2
DW n+15 KY 3.m Receiver =CPU3

Instead of the lower case letters a to m (in bold face) numbers between 0
and 48 must be inserted depending on the number of assigned memory
fields. The sum of these numbers must not exceed 48

Note

You must keep to the structure shown in Table 10-7 even if you have
less than four CPUs.

CPU 928B Programming Guide
C79000-B8576-C898-01

10-35

INITIALIZE Function (OB 200)

Example

You have three CPUs in your rack, CPU 2 sends a lot of data to the other

two CPUs. The other two CPUs, however, only send a small amount of data

back to CPU 2 as acknowledgements in a logical handshake. There is no
data exchange between CPU 1 and CPU 3

The assignment list is stored in data block DB 40 from DW 0 onwards and
has the following parameters:

DB40 FD: CPU928ST.S5D

0: KS =8S1; Transmitter: CPU 1
1: KY=2, 2; Receiver: CPU 2/2 fields
2: Ky=3, O0; Receiver: CPU 3/no field
3 KY=4, O0; Receiver: CPU 4 (does not exist)/no field
4. KS =8S2; Transmitter: CPU 2
5: KY =1, 22; Receiver: CPU 1/22 fields
6: KY=3, 22; Receiver: CPU 3/22 fields
7. KY=4, O0; Receiver: CPU 4 (does not exist)/no field
8: KS =S3; Transmitter: CPU3
9: Ky=1, O; Receiver: CPU 1/no field
10: KY=2, 2; Receiver: CPU 2/2 fields
11 KY =4, O0; Receiver: CPU 4 (does not exist)/no field
12 KS =$4; Transmitter: CPU 4 (does not exist)
13: KyY=1, O; Receiver: CPU 1/no field
14: KY=2, O0; Receiver: CPU 2/no field
15: KY =3,0; Receiver: CPU 3/no field
16:
10.4.4

Output Parameters
Condition code byte This byte informs you whether the INITIALIZE function was
executed correctly and completely.

Initialization conflict The initialization conflicts listed are recognized and indicated by the
function in the ascending order of their numbers.

If an initialization conflict occurs, you must change the
program/parameters.

All the numbers listed in the following table can occur in the
condition code byte.

CPU 928B Programming Guide
10 - 36 C79000-B8576-C898-01

INITIALIZE Function (OB 200)

Cond. Significance
code
byte

33 The pages required for multiprocessor communication
(numbers 252 to 255) are not or not athitable.

34 The pages required for multiprocessor communicatior
(numbers 252 to 25%e defective.

35 The parameter "automatic/manual" is illegal.
The following errors are possible:

- the "automatic/manual” ID is less than 1,

- the "automatic/manual” ID is greater than 2.

36 The parameter "number of CPUs" is illegal.
The following errors are possible:

- the number of CPUs is less than 2,

- the number of CPUs is greater than 4.

37 The parameter "block ID" is illegal.
The following errors are possible:

- the block ID is less than 1,

- the block ID is greater than 2.

38 The parameter "block number" is incorrect, since it is a data
block with a special significance.
The following errors are possible:
- if block ID =1 DB0O,DB1,DB?2
-ifblockID =2: DX0,DX1,DX2

39 The parameter "block number " is incorrect, since the data
block does not exist.

40 The parameter "start address of the assignment list" is too
high or the data block is too short.

41 The assignment list in the data block is not correctly
structured.

42 The sum of the assigned memory fields is greater than 48.

Errors The "error* number group cannot occur with the INITIALIZE
function.

Warning The "warning" number group cannot occur with the INITIALIZE
function.

Total capacity This parameter specifies how many of the 48 available memory fields

are assigned to links.

In the "aitomatic"mode, this parametekayshas the value 48. In the
"manual" mode, it can have a value less than 48. This means that existing
memory capacity is not used.

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 37

SEND Function (OB 202)

10.5 SEND Function (OB 202)

10.5.1
Function

10.5.2
Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.5.3
Input Parameters

Receiving CPU

10 - 38

The SEND function transfers a data field to the buffer of the
COR 923C coordinator. It also indicates how many data fields can
still be sent or buffered.

Before calling OB 202 you must specify the input parameters in the data
field. OB 202 requires six F flag bytes in the data field for input and
output parameters:

FY x + 0: receiving CPU input parameter
FY x + 1. block ID input parameter
FY x + 2: block number input parameter
FY x + 3: field number input parameter
FY x + 4: condition code byte output parameter
FY x + 5: transmitting capacity output parameter

When OB 202 is called, transfer the flag byte at which the parameter
data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0to 246

CPU number of the receiver (destination); the permitted value is between
1 and 4 but must be different from the CPU’s own number.

CPU 928B Programming Guide
C79000-B8576-C898-01

SEND Function (OB 202)

Block ID ID=1: DB data block
ID=2: DX data block
ID=0or 3to 255: illegal, causes an

error message

Block number The block number, along with the block ID and the field number
specifies the area from which the data to be sent is taken (and where it
is to be stored in the receiving CPU).

Remember that certain data blocks have a special significance, for
example, DB 0, DB 1 or DX 0 (see programming instructions for your
CPUs). These data blocks mustrgfore not be used for the data
transfer described here!

If you attempt to use these block numbers, the function is aborted with
an error message.

Field number The field number indicates the area in which the data to be sent is
located.
Field Data area
number
First data word Last data word

0 DW O DW 31
1 DW 32 DW 63
2 DW 64 DW 95
3 DW 96 DW 127
4 DW 128 DW 159
5 DW 160 DW 191
6 DW 192 DW 223
7 DW 224 DW 255
8 DW 256 DW 287
9 DW 288 DW 319

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 39

SEND Function (OB 202)

The following situations are possible:

» DB islongerthan source area
If the data block is sufficiently long, you obtain a 32-word long
area per field as shown in the table above.

e DB istoo short
If the end of the data block is within the selected field, in the last
field an area with a length between 1 and 32 words will be
transferred.

e Field is outside the DB:
If the first data word address of a field is not within the length of
the data block, the SEND function detects and indicates an error.

Example
Data block with a length of 80 words: DW 0 to
DW 74, 5 words are required for the block
header.
Field no.: First Last Length:
data word: data word:
0 DW 0 Dw 31 32 words
1 DW 32 DW 63 32 words
2 DW 64 DW 74 11 words
3and
higher Incorrect parameter assignment
10.54
Output Parameters
Condition code byte This byte informs you whether the SEND function was executed

correctlyand complesly.

Initialization conflict Has no significance with the SEND function.

CPU 928B Programming Guide
10-40 C79000-B8576-C898-01

SEND Function (OB 202)

Errors When the SEND function is called, the following error numbers
(evaluation of the condition code byte) can occur:

Condition Significance
code byte
65 The parameter "receiving CPU" is illegal.

The following errors are possible:
- The number of the receiving CPU is greater than 4

- The number of the receiving CPU is less than |1

- The number of the receiving CPU is the same|as
the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:
- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data|
corrupted)
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

69 The parameter "block ID" is illegal.
The following errors are possible:

- The block ID is less than 1,

- the block ID is greater than 2.

70 The parameter "block number" is illegal, since it is a data
block with a specialignificance.

The following errors are possible:

- Ifthe blockID=1:DB0,DB 1, DB 2
- If the block ID=2: DX 0, DX 1, DX 2

71 The parameter "block number" is incorrect.
The specified data block does not exist.

72 The parameter "field number" is incorrect. The data
block is too short or the field number too high.

CPU 928B Programming Guide
C79000-B8576-C898-01 10-41

SEND Function (OB 202)

Warning The function could be executed; the function call must be repeated,
e.g. in the next cycle.

The following warning numbers (evaluation of the condition code
byte) can occur:

Condition Significance
code byte
129 The SEND function cannot transfer data, since the

transmitting capacity was already zero when the
function was called.

Transmitting capacity The "transmitting capacity" indicates how many data fields can still
be sent and buffered.

CPU 928B Programming Guide
10-42 C79000-B8576-C898-01

SEND TEST Function (OB 203)

10.6 SEND TEST Function (OB 203)

10.6.1
Function

10.6.2
Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.6.3
Input Parameters

Receiving CPU

10.6.4

Output Parameters

Condition code byte

CPU 928B Programming Guide
C79000-B8576-C898-01

The SEND TEST function determines the number of free memory
fields in the buffer of the COR 923C coordinator.

Depending on this number m, the SEND function can be called m
times to transfer m data fields.

Before calling OB 203, you must specify the input parameters in the

data field. OB 203 requires 4 F flag bytes in the data field for input
and output parameters:

FY x + 0: receiving CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: transmitting capacity output parameter

When OB 203 is called, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0to 246

The CPU’s own number and the number of the receiving CPU
identify the link for which the transmitting capacity is determined.

This byte indicates whether the SEND TEST function was executed
correctlyand complesly.

10 - 43

SEND TEST Function (OB 203)

Initialization conflict Has no significance for the SEND TEST function.

Errors When calling the SEND TEST function, the following error numbers
(evaluation of the condition code byte) can occur:

Condition Significance
code byte
65 The parameter "receiving CPU" is illegal.

The following errors are possible:
- The number of the receiving CPU is greater than 4,

- The number of the receiving CPU is less than |1,

- The number of the receiving CPU is the same|as
the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:
- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.

- Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).

- The CPU’s own number is incorrect (system data
corrupted);
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE

function.
Warning The "warning" numberrgup cannot occur with the SEND TEST
function.
Transmitting capacity The "transmitting capacity" parameter indicates how many data fields

can be sent and buffered.

CPU 928B Programming Guide
10 - 44 C79000-B8576-C898-01

RECEIVE Function (OB 204)

10.7 RECEIVE Function (OB 204)

10.7.1
Function

10.7.2
Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.7.3
Input Parameters

Transmitting CPU

CPU 928B Programming Guide
C79000-B8576-C898-01

The RECEIVE function takes a data field from the buffer of the

COR 923C coordinator. It also indicates how many data fields are still
buffered and can still be received.

The RECEIVE function should be called in a loop until all the
buffered data fields have been received.

Before calling OB 204, you must specify the input parameters in the
data field. OB 204 requires 10 F flag bytes in the data field for input
and output parameters:

FY x + 0: transmitting CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter
FY x + 4: block ID output parameter
FY x + 5: block number output parameter
FY x + 677 [address of the first output parameter
FY x+ 7| | received data word output parameter
FY x + 8: address of the last output parameter

FY x + 9: | | received data word

When calling OB 204, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0to 246

The receive block receives data supplied by the transmitting CPU.
Specify the number of the transmitting CPU. The permitted value is
between 1 and 4, but must be different from the CPU’s own number.

10 - 45

RECEIVE Function (OB 204)

10.7.4
Output Parameters

Condition code byte This byte informs you whether the RECEIVE function was executed
correctly and completely.

Initialization conflict Has no significance with the RECEIVE function.

Errors When calling the RECEIVE function the following error numbers
(evaluation of the condition code byte) can occur:

Condition Significance
code byte

66 The parameter "transmitting CPU" is illegal.
The following errors are possible:
- The number of the transmitting CPU is greater
than 4,
- The number of the transmitting CPU is less than 1,
- The number of the transmitting CPU is the same
as the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:
- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.
Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).
The CPU’s own number is incorrect (system data,
corrupted)
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator 923C again using the INITIALIZE
function.

69 The block identifiers supplied by the transmitter are
illegal.
The following errors are possible:

- The block ID is less than 1,

- The block ID is greater than 2.

CPU 928B Programming Guide
10 - 46 C79000-B8576-C898-01

RECEIVE Function (OB 204)

Condition Significance
code byte

Error numbers continued:

70 The block number supplied by the transmitter is illegal
since it is a data block with a specighificance.
The following errors are possible:

- If the block ID=1:DB0,DB 1, DB 2

- If the block ID=2: DX 0,DX 1, DX 2

71 The block number provided by the transmitter is
incorrect. The specified data block does not exist.

73 The data block is too small to receive the data field
supplied by the transmitter.

Warning The function could not be executed; the function call must be
repeated, e.g. in the next cycle.

The following warning number (evaluation of the condition code
byte) can occur:

Condition Significance
code byte

130 The RECEIVE function cannot receive data, since
the receiving capacity was eddy zeravhen the
function was called.

Receiving capacity The "receiving capacity" parameter indicates how many data fields -
are still buffered and can still be received.

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 47

RECEIVE Function (OB 204)

Block ID:

Block number

Address of the first
received data word

Address of the last
received data word

10 - 48

ID=1: DB data block
ID=2: DX data block
ID=0or 3to 255: illegal, causes an

error message

Block number of the DB/DX in which the received data are stored
(and from which they are taken by the SEND function in the
transmitting CPU).

Remember that the reige data blocks must be in adam &cess
memory, using readnly memories (EROM) might possibly serve a
practical purpose for transmit data blookdy .

Data word number within the DB/DX in which the first
transferred/received data word was stored.

Data word number within the DB/DX in which the last
transferred/received data word was stored.

Note

The difference between the addresses of the first and last data
word transferred is a maximum of 31, since a maximum of 32
data words can be transferred per function call.

CPU 928B Programming Guide
C79000-B8576-C898-01

RECEIVE TEST Function (OB 205)

10.8 RECEIVE TEST Function (OB 205)

10.8.1
Function

10.8.2

Call Parameters

Structure of the (parameter)
data field

ACCU-1-L

10.8.3
Input Parameters

Transmitting CPU

10.8.4

Output Parameters

Condition code byte

Initialization conflict

CPU 928B Programming Guide
C79000-B8576-C898-01

The RECEIVE TEST function determines the number of occupied
memory fields in the buffer of the COR 923C coordinator. Depending
on this number m, the RECEIVE function can be called m times to
receive m data fields.

Before calling OB 205, you must specify the input parameters in the
data field. OB 205 requires 4 F flag bytes in the data field for input
and output parameters:

FY x + 0: transmitting CPU input parameter
FY x + 1: — not used

FY x + 2: condition code byte output parameter
FY x + 3: receiving capacity output parameter

When calling OB 204, transfer the flag byte number at which the
parameter data field begins to ACCU-1-L:

ACCU-1-LH: 0
ACCU-1-LL: 0to 246

The CPU’s own number and the number of the transmitting CPU identify
the link for which the receiving capacity is determined.

This byte indicates whether the RECEIVE TEST function was executed
correctlyand complesly.

Has no significance with the RECEIVE TEST function.

10 - 49

RECEIVE TEST Function (OB 205)

Errors When calling the RECEIVE TEST function, the following error
numbers (evaluation of the condition code byte) can occur:

Condition Significance
code byte
66 The parameter "transmitting CPU" is illegal.

The following errors are possible:
- The number of the transmitting CPU is greater
than 4,
- The number of the transmitting CPU is less than 1,

- The number of the transmitting CPU is the same
as the CPU’s own number.

67 The special function organization block call is wrong.
The following errors are possible:
- Secondary error, since the INITIALIZE function
could not be called or was terminated by an
initialization conflict.
Double call: the call for this function, SEND, SEND
TEST, RECEIVE or RECEIVE TEST is illegal,
since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has
already been called in this CPU in a lower processing
level (e.g. cyclic program processing).
The CPU’s own number is incorrect (system data|
corrupted);
following power down/power up the CPU number
is generated again by the system program.

68 The management data (queue management) of the
selected links are incorrect; set up the buffer in
the coordinator COR 923C again using the
INITIALIZE function.

\1%2

Warning The "warning" numberrgup cannot occur with the RECEIVE TEST
function.
Receiving capacity The "receiving capacity" parameter indicdtess many data élds can

be received and buffered.

CPU 928B Programming Guide
10 - 50 C79000-B8576-C898-01

Applications

10.9 Applications

10.9.1

Calling the Special
Function OB using
Function Blocks

CPU 928B Programming Guide
C79000-B8576-C898-01

Based on examples, this section explains how to program
multiprocessor communication.

Note

If you use the function blocks listed below and service interrupts @
your CPU (e.g. with OB 2) remember to save the "scratchpad flag
at the start of interrupt servicing and to write them back when the
interrupt is completed.

This also applies to the setting "interrupts at block boundaries", since
the call of the special function organization blocks represents a block
boundary.

>

7]

The following five function blocks (FB 200 and FB 202 to FB 205)
contain the call for the corresponding special function organization block
for multiprocessor communication (OB 200 and OB 202 to OB 205).
The numbers of the function blocks are not fixed and can be changed.
The parameters of the special function OBs aresterred as actual
parameters when the function blocks are called. The direct call of the
special function organization blocks is faster, however, is more difficult
to read owing to the absence of formal parameters

FB no. FB name Function
FB 200 INITIAL Set up buffer
FB 202 SEND Send a data field
FB 203 SEND-TST |Test sending capacity
FB 204 RECEIVE Receive a data field
FB 205 RECV-TST |Testreceiving capacity

The flag area from FY 246 to maximum FY 255 is used by the function
blocks as a parameter field for the special function organization blocks.

The exact significance of the input and output parameters is explained
in the description of the special function organization blocks.

10-51

Applications

Note
The following examples of applications involve finished applications
that you can program by copying them.

Programming function
blocks

FB 200: initializing the links

FB 200
INITIAL

(1) —AUMA INIC —(5)

(2) —NUMC TCAP —(6)

(3) — TNAS

(4 —STAS

Parameter Significance Parameter Data Parameter

name type type field
AUMA Automaticianual I BY FY 246
NUMC Number of CPUs I BY FY 247
TNAS Type (H byte) andiumber (L byte) I w FW 248

of the data block containing the
assignment list

STAS Start address of thessignment list I w FW 250
INIC Ini tializationconflict Q BY FY 252
TCAP T otal capacity Q BY FY 253

Continued on the next page

CPU 928B Programming Guide
10-52 C79000-B8576-C898-01

Applications

FB 200 continued

FB 200 LEN=45
SEGMENT 1 0000

NAME:INITIAL

DECL :AUMA I/IQ/D/BITIC: 1 BI/BY/W/D:BY

DECL :NUMC I/Q/D/BITIC: |1 BI/BY/W/D:BY

DECL :TNAS I/IQ/D/BITIC: 1 BI/BY/W/D:W

DECL :STAS I/Q/D/BITIC: 1 BI/BY/W/D:W

DECL :INIC I/Q/D/BITIC: Q BI/BY/W/D:BY

DECL :TCAP I/IQ/D/BITIC: Q BI/BY/W/D:BY

0017 L =AUMA Automatic/manual
0018 T FY 246

0019 L =NUMC Number of CPUs
001A T FY 247

001B L =TNAS DB type, DB no.
001C T FY 248

001D L =STAS Start address of the assignment
001E T FwW 250 list

001F :

0020 L KB 246 SF OB:

0021 :JU OB 200 "Initialize "
0022 :

0023 L FY 252 Initialization conflict
0024 T =INIC

0025 L FY 253 Total capacity

0026 T =TCAP

0027 ‘BE

CPU 928B Programming Guide
C79000-B8576-C898-01 10-53

Applications

FB 202: Sending a data field

FB 202
SEND
(1) —RCPU ERWA — (@)
(29 —TNDB TCAP —(5)
(3 ~— FINO
Parameter Significance Parameter Data Parameter
name type type field
RCPU ReceivingCPU I BY FY 246
TNDB Type (H byte) anciumber (L byte) I W FW 247
of the sourcelatablock
FINO Field number I BY FY 249
ERWA Erroriwarning Q BY FY 250
TCAP T ransmittingcapacity BY FY 251
FB 202 LEN=40
SEGMENT 1 0000
NAME:SEND
DECL :RCPU 1/Q/D/BIT/C: | BI/BY/W/D:BY
DECL :TNDB 1/Q/D/B/TIC: | BI/BY/W/D:W
DECL :FINO I/Q/D/BITIC: | BI/BY/W/D:BY
DECL :ERWA 1/Q/D/BITIC: Q BI/BY/W/D:BY
DECL :TCAP I/Q/D/BITIC: Q BI/BY/W/D:BY
0014 L =RCPU Receiving CPU
0015 T FY 246
0016 'L =TNDB DB type, DB no.
0017 T FW 247
0018 L =FINO Field number
0019 T FY 249
001A :
001B 'L KB 246 SF OB:
001C :JU OB 202 "Send a data field"
001D :
001E L FY 250 Erroriwarning
001F T =ERWA
0020 L FY 251 Transmitting capacity
0021 T =TCAP

10 - 54

CPU 928B Programming Guide
C79000-B8576-C898-01

Applications

FB 203: Testing the transmitting capacity

FB 203
SEND-TST
(1) —RCPU ERRO —(2)
TCAP —(3)

Parameter Significance Parameter Data Parameter
name type type field
RCPU ReceivingCPU I BY FY 246
ERRO Error Q BY FY 248
TCAP T ransmittingcapacity Q BY FY 249

FB 203 LEN=30
SEGMENT 1 0000

NAME:SEND-TST

DECL :RCPU 1/Q/D/BITIC: | BI/BY/W/D:BY

DECL :ERRO 1/Q/D/BITIC: Q BI/BY/W/D:BY

DECL :TCAP 1/Q/D/BITIC: Q BI/BY/W/D:BY

000E L =RCPU Receiving CPU

000F T FY 246

0010 :

0011 L KB 246 SF OB:

0012 :JU OB 203 "Test transmitting capacity”
0013 :

0014 L FY 248 Error

0015 T =ERRO

0016 L FY 249 Transmitting capacity

0017 T =TCAP

0018 ‘BE

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 55

Applications

FB 204: Receiving a data field

FB 204
RECEIVE
(1) —TCPU ERWA —(2)
RCAP — (3)
TNDB —— (4)
STAA —— (5)
ENDA—— (6)

Parameter Significance Parameter Data Parameter
name type type field
TCPU TransmittingC PU I BY FY 246
ERWA Error/warning Q BY FY 248
RCAP Receivingcapacity Q BY FY 249
TNDB Type (H byte) andiumber (L byte) of the Q W FW 250

destinatiordatablock
STAA Address of the first received data word Q W FW 252
(start address)
ENDA Address of the last received data word Q W FW 254
(end address)
Continued on the next page
CPU 928B Programming Guide
10 - 56 C79000-B8576-C898-01

Applications

FB 204 continued:

FB 204 LEN=45
SEGMENT 1 0000

NAME:RECEIVE

DECL :TCPU |1/Q/D/B/TIC: | BI/BY/W/D:BY

DECL :ERWA 1/Q/D/BITIC: Q BI/BY/W/D:BY
DECL :RCAP I/Q/D/BITIC: Q BI/BY/W/D:BY
DECL :TNDB 1/Q/D/BIT/C: Q BI/BY/W/D:W
DECL :STAA 1/Q/D/BIT/C: Q BI/BY/W/D:W
DECL :ENDA 1/Q/D/B/TIC: Q BI/BY/W/D:W

0017 L =TCPU Transmitting CPU
0018 T FY 246

0019 :

001A L KB 246 SF OB:

001B :JU OB 204 "Receive a data field"
001C :

001D L FY 248 Erroriwarning
001E T =ERWA

001F L FY 249 Receiving capacity
0020 T =RCAP

0021 L FW 250 DB type, DB no.
0022 T =TNDB

0023 L FW 252 Start address
0024 T =STAA

0025 L FW 254 End address

0026 T =ENDA

0027 :-BE

FB 205: Testing the receiving capacity

FB 205
RECV-TST
(1) —TCPU ERRO —(2)
RCAP — (3)

Parameter Significance Parameter Data Parameter
name type type field
TCPU TransmittingC PU I BY FY 246
ERRO Error Q BY FY 248
RCAP Receivingcapacity Q BY FY 249

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 57

Applications

FB 205 continued:
FB 205

SEGMENT 1 0000
NAME:RECV-TST

DECL :TCPU I/Q/D/B/T/C: |

DECL :ERRO l/Q/D/B/T/C: Q
DECL :RCAP l/Q/D/B/T/C: Q

00OE L =TCPU
000F T FY 246
0010 :
0011 L KB 246
0012 :Ju OB 205
0013 :
0014 L FY 248
0015 T =ERRO
0016 L FY 249
0017 T =RCAP
0018 ‘BE

10.9.2

Transferring Data Blocks

Programming FB 110

LEN=30

BI/BY/W/D:BY
BI/BY/W/D:BY
BI/BY/W/D:BY

Transmitting CPU

SF OB:
"Test receiving capacity

Error

Receiving capacity

In this example, the function block TRAN DAT (FR.O)transfers a
selectable number of data fields from a data block in one CPU to the
data block of the same type and same number in a different CPU.
The FB number (FB 110) has been selected at random and you can
use other numbers.

Programming FB 110 is described first followed by the application of
FB 110.

FB 110: Transferring a data block

Task

The data area to be transferred is stipulated by the input parameter
FIRB (= number of the first data field to be transferred) and NUMB (=
number of data fields to be transferred). A data field normally consists
of 32 data words. Depending on the data block length, the last data
field may be less than 32 data words.

The transfer is triggered by a positive-going edge at the start input

STAR. If the output parameter REST is zero after the transfer, this means
that the function block TRANDAT was able to send all the data fields
(according to the NUMB parameter).

10 - 58

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01

Applications

FB 110 continued:

If, however, the REST output parameter has a value greater than zero,
this means that the function block must be called again, for example in
the next cycle. This means that you or the user program can only change
the set parameters (i.e. the values of all parameters) when the REST
parameter indicates zero showing that the data transfer is complete.

You can call the function block TRANDAT several times with different
parameters. In this case, various data areas are transferred
simultaneously (interleaved in each other). The special function
organization blocks for multiprocessor communication OB 202 to OB 205
can also be used "directly". This possibly is illustrated in the

application example.

If the SEND function (OB 202) is not correctly executed with the TRANDAT
function block, the error number is entered in the output parameter ERRO,
the RLO ="1" and the output parameter REST is setto 0’

The TRANDAT function block uses flag bytes FY 246 to FY 251 as
scratchpad flags. All other variables whose value is significant as long

as the output parameter REST =0’ continue to have memory assigned to
them using the mechanism of formal/actual parameters. This is necessary
to allow various data blocks to be transferred simultaneously.

Implementation
FB 110
TRAN-DAT

1) 7STAR ERRO 7(6)
@) 7RCPU REST 7(7)
(3) TNDB CUBN E
@ . NUMB EDGF 7(9)
") 7FIRB

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01

10-59

Applications

FB 110 continued:

Parameter Significance Parameten Data
name type type
STAR Start the transfer of the data block on a positive-going edge | BI
RCPU ReceivingCPU I BY
TNDB Type (H byte) anciumber (L byte) of the data block to be I w

transferred.
NUMB Number of data fields to be transferred. I BY
FIRB Number of the first data field to be transferred. I BY
ERRO Error Q BY
REST Number of data fields still to be transferred. Q BY
cuBNY |currentfield number Q BY
EDGFY |Edgeflag Q BI
D Internal scratchpad flag, not intended for evaluation
FB 110 LEN=89
SEGMENT 1 0000
NAME:TRAN-DAT
DECL :STAR 1/Q/D/BITIC: | BI/BY/W/D:BI
DECL :RCPU I/Q/D/B[TIC: | BI/BY/W/D:BY
DECL :TNDB I/Q/D/B/T/C: | BI/BY/WI/D:W
DECL :NUMB 1/Q/D/B/TIC: | BI/BY/W/D:BY
DECL :FIRB I/Q/D/B/TIC: | BI/BY/W/D:BY
DECL :ERRO 1/Q/D/BITIC: Q BI/BY/W/D:BY
DECL :REST I/Q/D/BITIC: Q BI/BY/W/D:BY
DECL :CUBN I/Q/D/BITIC: Q BI/BY/W/D:BY
DECL :EDGF I/Q/D/B/TIC: Q BI/BY/WI/D:BI
0020 L =RCPU Assign parameter field for
0021 T FY 246 SF OB 202
0022 L =TNDB
0023 T FW 247
0024 :

Continued on the next page

CPU 928B Programming Guide
10 - 60 C79000-B8576-C898-01

Applications

FB 110 continued:

0025 L =REST First send any remaining
0026 L KB O data fields

0027 ><F

0028 JC =TRAN

0029 :

002A ‘AN =STAR Positive edge at start
002B ‘RB =EDGF input ?

002C ‘ON =STAR

002D 0 =EDGF

002E JC =GOOD

002F 'S =EDGF

0030 :

0031 L =NUMB Initialize the global flags
0032 T =REST after postive edge at
0033 L =FIRB START input

0034 T =CUBN

0035 :

0036 L =REST As long as REST ><0,
0038 LOOP:L KF+0 continue to attempt to
0039 A=F send data fields

003A JC =GOOD

003B TRAN:L =CUBN

003C T FY 249

003D L KB 246 SF OB:

003E :JU OB 202 "Send a data field"
003F 'L FY 250

0040 M =ERRO Abort if error

0041 JP =GOO0D Abort if trans-cap. = 0
0042 L =CUBN Increment

0043 o 1 field number

0044 T =CUBN

0045 L =REST Decrement number of
0046 :D 1 remaining data fields
0047 T =REST

0048 2JuU =LOOP

0049 :

004AGOOD :A FO0.0 Regular end of program:
004B AN F0.0

004C L KBO RLO =0, ERRO =0
004D T =ERRO

004E :‘BE

004F :

0050 ERRO :T =ERRO Program end if error:
0051 L KBO

0052 T =REST RLO =1, ERRO contains error
0053 ‘BE number

CPU 928B Programming Guide
C79000-B8576-C898-01 10-61

Applications

Application of FB 110

Application of FB 110
Task
You want CPU 1 to transfer data blocks DB 3 (data fields 2 to 5) and DB 4

(data fields 1 to 3) to CPU 2 during the cyclic user program. The RECEIVE
function (OB 204) is also called in the cyclic user program.

Implementation
Function CPU 1 CPU 2
called in: called in:
Initialization (OB 200) OB 20 -
Send organization (FB 1) OB 1 -
Receive organization (FB 2) - OB 1
exists: exists:
Send DB DB 3; DB 4 -
Receive DB - DB 3; DB 4

The user program in function block FB 1 of CPU 1 contains two calls for
the function block TRANDAT in each case with different sets of
parameters.

The transfer of the first data block DB 3 begins after a positive edge
after input | 2.0. A positive edge at input | 2.1 starts the transfer of

the second data block.

FB 1 LEN=yy
SEGMENT 1 0000

NAME:S-ORG

0000 L KB 2 ToCPU2..

0001 T FY O

0002 L KY 1,3 .. from data block DB 3
0003 T FW1

0004 L KB 4 .. four data fields

0005 T FY 3

0006 L KB 2 .. send from 2nd data field
0007 T FY 4

0008 :

Continued on the next page

CPU 928B Programming Guide
10- 62 C79000-B8576-C898-01

Applications

Application example continued:

0009 JuU FB 110

000A NAME :TRAN-DAT

000B STAR : 12.0

000C RCPU : FY O

000D TNDB : FW 1

OOOE NUMB : FY 3

O000F FIRB : FY 4

0010 ERRO : FY5

0011 REST : FY 6

0012 CUBN : FY 7

0013 EDGF : F8.0

0014 :

0015 :

0016 JC =HALT Abort after error
0017 :

0018 L KB 2 ToCPU2..

0019 T FY 10

001A L KY 1,4 .. from data block DB 4
001B T Fw 11

001C L KB 3 .. three data fields
001D T FY 13

001E L KB 1 .. send from 2nd data field
001F T FY 14

0020 :

0021 JU FB110
0023 NAME :TRAN-DAT

0024 STAR : 12.1

0025 RCPU : FY 10

0026 TNDB FW 11

0027 NUMB : FY 13

0028 FIRB FY 14

0029 ERRO FY 5

002A REST : FY16

002B CUBN : FY17

002C EDGF : F8.1

002D :

002E :

002F JJC =HALT Abort after error

0030 :BEU

0031 :

0032 HALT :

0033 : The error handling takes place
0034 : here (e.g. stop, message output
0035 on the printer, ...)

0036

00xx :‘BE

CPU 928B Programming Guide

C79000-B8576-C898-01

Continued on the next page

10 - 63

Applications

Application example continued:

In CPU 2, the RECEIVE function (OB 204) called by FB 2 enters each
transmitted data field into the appropriate data block. It may take
several cycles before a data block has been completely received.

FB 2 LEN=yy
SEGMENT 1 0000
NAME:RECV-DAT
0000 L KB 1 Receive data from CPU 1
0001 T FY 246
0002 :
0003 SCHL L KB 246 SF OB:
0004 :JuU OB 204 "Receive"
0005 M =ERRO Abort if error
0006 L FY 249 The RECEIVE function is
0007 L KBO called until there are no
0008 ><F further of data fields in
0009 JC =LOOP the buffer, i.e. the
000A : receiving capacity = 0.
000B :‘BEU
000C ERRO :
000D : The error handling takes place
000E : here (e.g. stop, message output
000F : on printer, ...)
00xx ‘BE
10.9.3
Extending the IPC
Flag Area
The problem In the S5-135U/155U programmable controllers, each of the 256 flag

bytes of a CPU can become an input or output IPC flag by making an
entry in data block DB 1. This, however, reduces the number of
"normal” flag bytes. To transfer a data record (several bytes) other
mechanisms are also required (semaphore variable orgaxatneter
assignment "transfer IPC flags as a block") are necessary to prevent
the receiver from receiving a fragmented data record.

CPU 928B Programming Guide
10 - 64 C79000-B8576-C898-01

Applications

The solution Consecutive data words of a DB or DX data block are defined from
DW 0 onwards as "IPC data words". Each link is assigned its own
data block and is totalindependent of the other links.

At the beginning of the cycle block, the IPC data words are received with
the aid of the special function organization blocks for multiprocessor
communication. This is followed by the "regular” cyclic program, that
evaluates the received data and generates the data to be sent. At the end
of the cycle, this data is then sent with the aid of the special organization
blocks for multiprocessor communicationcéin therefore be received by

the other CPUs at the beginning of their cycles.

The following applies for each of the maximum 12 possible links
regardless of the other links:

e The transmitting CPU is only active when the receiving CPU has
read out all the "old" data from the COR 923C buffer.

e The receiving CPU is only active when the transmitting CPU has
written all the "new" data in the COR 923C bulffer.

This means that the receiving CPU can either receive a complete new
data record or the old data record remains unchangedixing of
"old" and "new" data.

Data structure Which data words (for the data word area below) are to be transferred
from which CPU to which CPU is described in the link list (see the table
on the following page). This is located in an additional data block that
must exist in all the CPUs involved.

The data word areas alwayegfin from data word DW 0, and their
lengths are sgified indata fields. Remember the following points:

» A complete data field consists of 32 data words.

« |[f the last data field is "truncated", i.e. it contains between 1 and
31 data words, less data words are transferred.

« If asend data block is longer than the number of fields of data spe-
cified in the link list, the excess data words can be used in the cor-
responding CPU.

« If areceive data block is longer than the received data word area,
the excess data words can be used in the corresponding CPU.

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 65

Applications

Structure of the

link list
Table 10-8 Link list for extending the IPC flag area
SUB-LIST 1 SUB-LIST 2
Link DB type DB No. of data
number fields

from CPU 1 DW 0 S1 DW 16 S1

to ...

.. CPU?2 DW 1 DW 17 2

..CPU3 DW 2 DW 18 3

...CPU 4 DW 3 DW 19 4

from CPU 2 DW 4 S2 DW 20 S2

to ...

..CPU1 DW 5 DW 21 1

..CPU3 DW 6 19 10 DW 22 3 2 b
..CPU4 DW 7 DW 23 4

from CPU 3 DW 8 S 3 DW 24 S3

to ...

..CPU1 DW 9 DW 25 1

..CPU2 DW 10 DW 26 2

..CPU4 DW 11 DW 27 4

from CPU 4 DW 12 S 4 DW 28 S4

to ...

..CPU1 DW 13 DW 29 1

.. CPU2 DW 14 DW 30 2

..CPU3 DW 15 DwW 31 3

515 20 515 20

D Refer to the example on the following page

10 - 66

CPU 928B Programming Guide
C79000-B8576-C898-01

Applications

The link consists of two similarly structured sub-lists, each with 16 data
words. For each of the four sender CPUs (S1, S2, S3, S4) three entries are
required to describe a link.

* Number of data fields
The number of data fields specifies the size (= the number of data
words) of the data word area to be transferred. (If links do not
exist or you do not require them, enter O for the number of data
fields, and for the DB type and DB number.)

« DB type

Type of data block containing the data word area to be transferred.

e DB number

Number of the data block containing the data word area to be trans-
ferred.

As shown in the table, these entries can be read in and completed in lines.
If, for example, you want to transfer the first tdeta fields in data block
DB 10 from CPU 2 (S2) to CPU 3, make the following entries:

CPU 2 € 2 sends ..

DWZZ‘ 3\ 2\ DWG‘ 1\ 10
o o

.o CPU3 2 data fields from DB 10

Sub-list 2 is identical to the assignment (“manual” mode) required for
the INITIALIZE function (OB 200). Within the data block, sub-list 2
must occupy data words 0 to 15 and sub-list 2 data words 16 to 31.
You must not alter the entries shown in bold face.

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 67

Applications

Program structure During restart, one of the CPUs calls the INITIALIZE function
(OB 200) to reserve exactly the same number of coordinator memory
fields per link as data fields to be transmitted on this link.

To send and receive data word areas, each CPU uses two function

blocks:
FB no. Name Function
FB 100 SEND-DAT Send data word areas
to the other CPUs
FB 101 RECV-DAT Receive data word areas
from the other CPUs

These FB numbers have been selected at random and you can use
others.

The function blocks SEND-DAT and RECV-DAT read the link list to
determine which data word areas are to be sent from or received by
which data blocks. Thehole data word area sways gnt or received.
If this is not possible owing to insufficient transmitting or receiving
capacity, the send or receive function is not executed.

Note
This example (IPC flag extension using function blocks SEND-DAT
and RECV-DAT) can only run correctly when the special function
organization blocks for multiprocessor communication OB 202 to
OB 205 are not called in any of the CPUs.

The function blocks SEND-DAT and RECV-DAT contain the
special function organization blocks for multiprocessor
communication OB 202 to OB 205. You cannot call these
organization blocks outside SEND-DAT/RECV-DAT.

CPU 928B Programming Guide
10 - 68 C79000-B8576-C898-01

Applications

OB 20
Restart OB to reserve ; 1) OB 200 must
the buffer on the . 1 only be called
923C coordinator JU OB 200) in one processor.
-
BE
OB 1
Cyclic user program
extended by the calls for C DB xxx
the RECV-DAT and SEND-DAT Ju FB 101
function blocks.
C DB xxx
Ju FB 100
BE
FB 100
Function block: SEND-DAT
Send data blocks
. -
BE
FB 101
Function block: RECV-DAT
Receive data blocks
47,
BE
DB xxx
Data block containing
the link list KS = S1
_ evalu-
KY, =L ated
by ...
Maximum three input and DB yyy
three output blocks or/and
DX zzz

Fig. 10-6 Overview of the blocks required in each CPU

CPU 928B Programming Guide
C79000-B8576-C898-01 10 - 69

Applications

Programming function
blocks

FB 100: Sending data word areas

Before you call FB 100, the data block containing the link list must be
open. The function block SEND-DAT requires the number of the CPU on
which it is called in order to evaluate the information contained in the

link list.

If the SEND function (OB 202) is not executed correctly in the function
block, the error or warning number is transferred to the output

parameter ERWA and RLO is setto 1.

If the input parameter CPUN (CPU number) is illegal, ERWA has the value
16 (bit no. 4 = 1).

The function block SEND-DAT uses flag bytes FY 239 to FY 251 as
scratchpad flags.

FB 100
SEND-DAT
(1) —<C€PUN ERWA —(2
Parameter Significance Parameter Data
name type type
CPUN Number of theCPU on which FB 100 is called. D KF
The numbers 1 to 4 are permitted.
ERWA Erroriwarning (see SEND function/ Q BY
OB 202)
FB 100 LEN=90
SEGMENT 1 0000
NAME:SEND-DAT
DECL :CPUN 1/Q/D/BIT/C: D KM/KH/KY/KS/KF/KT/KC/KG:KF
DECL :ERWA 1/Q/D/B/TIC: Q BI/BY/WID: BY
000B LW =CPUN CPUN=CPUN-1
00oC L KB 1 Error if:
000D -F
000E M =ERWA CPU no. <1
000F 'L KB 3
0010 >F
0011 JC =ERWA CPU no. >4
0012 TAK

Continued on the next page

CPU 928B Programming Guide
10-70 C79000-B8576-C898-01

Applications

FB 100 continued:

0013 :

0014 SLW 2 CPUN=CPUN*4
0015 T FY 245 Base address

0016 :

0017 L KB 1

0018 T FY 244 Link counter

0019 :

001ALOOP L FY 245 Base address

001B L FY 244 + counter

001C +F

001D T FW 240

001E :ADD BN+16 + offset

001F T FW 242

0020 :

0021 :DO FwW 242

0022 L DRO Number of reserved
0023 T FY 239 fields=07?

0024 L KB O

0025 I=F

0026 :JC =EMPT

0027 :

0028 B FW 242

0029 L DLO No. of the receiving CPU
002A T FY 246

002B L KB 246 SF OB:

002C JU OB 203 "Test sending capacity"
002D L FY 248 Abort if error

002E :JC =0OBER

002F :

0030 L FY 249 Transmitting capacity >< no.
0031 L FY 239 of reserved fields?
0032 ><F

0033 :JC =EMPT

0034 :

0035 L KB O Field counter

0036 T FY 249

0037 :

0038 B FY 240

0039 L DW 0 Type and number of
003A T FwW 247 the source DB

003B :

003C TRAN L KB 246 SF OB:

003D :JuU OB 202 Send a data field
003E 'L FY 250 Abort if error/warning
003F JC =OBER

0040 :

0041 L FY 249 Field no. =field no. + 1
0042 | 1

0043 T FY 249 All data fields transferred ?
0044 L FY 239

0045 <F

0046 :JC =TRAN

0047 :

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01 10-71

Applications

FB 100 continued:

0048 EMPT 'L FY 244 Increment

0049 l 1 link counter

004A T FY 244

004B L KB 4 All links

004C <F processed ?

004D M =LOOP

004E L KB O Regular program end:
004F T =ERWA RLO=0,ERWA=0
0050 :‘BEU

0051 :

0052 ERWA L KB16 Program end if error:
0053 0OBER T =ERWA RLO =1, ERWA contains
0054 ‘BE error/warning number

FB 101: Receive data word areas

Before you call FB 101, the data block containing the link list must

already be open. The function block RECV-DAT requires the number of the
CPU in which it is called in order to evaluate the information contained

in the link list.

If the RECEIVE function (OB 204) is not correctly processed within the
function block, the corresponding error or warning number is transferred
to the output parameter ERWA and the RLO is set to 1. If the input
parameter CPUN is illegal, ERWA has the value 16 (bit no. 4 = 1).

The RECV-DAT function block uses flag bytes FY 242 to FY 255 as
scratchpad flags.

FB 101
RECV-DAT
(1) —€PUN ERWA —(2)
Parameter Significance Parameter Data
name type type
CPUN Number of thecPU, on which FB 101 is called. D KF

The numbers 1 to 4 are permitted.

ERWA Erroriwarning (see RECEIVE function / Q BY
OB 204)

Continued on the next page

CPU 928B Programming Guide
10-72 C79000-B8576-C898-01

Applications

FB 101 continued:

FB 101 LEN=88
SEGMENT 1 0000

NAME:RECV-DAT

DECL :CPUN |/Q/D/B/T/C: D KM/KH/KY/KS/KFKT/KC/KG:KF
DECL :ERWA |/Q/D/BIT/C: Q BI/BYWID: BY

0ooB LW =CPUN Error if:

000C L KB 1

000D <F

000E JC =ERWA CPU no. <1

OO0OF LW =CPUN

0010 L KB 4

0011 >F

0012 JC =ERWA CPU no. >4

0013 :

0014 L KB 1 Link counter

0015 T FY 242

0016 :

0017 L KB 16

0018 T FW 244 Pointer to sub-list 2
0019 :

001A SRCH L FW 244 Search sub-list 2 until
001B : 1 the next entry for the
001C T FW 244 receiving CPU with the
001D :DO FW 244 number'CPUN'’ is found.
001E L DLO

001F LW =CPUN

0020 ><F

0021 JC =SRCH

0022 :

0023 :DO FW 244

0024 L DRO Number of reserved
0025 T FY 243 memory fields =0 ?
0026 L KB O

0027 A=F

0028 JC =EMPT

0029 :

002A L FW 244 Determine the number of the
002B 'L KM 00000000 00001100 transmitting CPU from the
002D AW pointer to sub-list 2.
002E :SRwW2

002F :I 1

0030 T FY 246

0031 :

0032 L KB 246 SF OB:

0033 :JuU OB 205 "Test receiving capacity"
0034 L FY 248

0035 :JC =0BER Abort if error

0036 :

CPU 928B Programming Guide
C79000-B8576-C898-01

Continued on the next page

10-73

Applications

FB 101 continued:

0037 L FY 249
0038 L FY 243
0039 ><F

003A JC = EMPT
003B :

003C RECV L KB 246
003D JU OB 204
003E L FY 248
003F M =OBER
0040 L FY 249
0041 L KB 0O
0042 ><F

0043 JC =RECV
0044 :

0045 EMPT L FY 242
0046 | 1

0047 T FY 242
0048 L KB 4
0049 <F

004A JJM = SRCH
004B L KB 0O
004C T =ERWA
004D ‘BEU

004E :

004F ERWA L KB16
0050 OBER T =ERWA

0051

10-74

‘BE

Receiving capacity = number
of reserved
memory fields ?

SF OB:
"Receive a data field"

Abort if error/warning
if receiving capacity = 0
process next link

Increment
link counter

All links
processed ?

Regular program end:
RLO=0,ERWA=0

Program end if error:
RLO =1, ERWA contains
error/warning number

CPU 928B Programming Guide
C79000-B8576-C898-01

Applications

Application example

Application of FB 100/101

Task

You want to exchange data between three CPUs:

- From CPU 1 to CPU 2: data block DB 3, DW 0 to DW 127 (= 4 data fields)
- From CPU 1 to CPU 3: data block DX 4, DW 0 to DW 63 (= 2 data fields)

- FromCPU 2to CPU 1
and CPU 3: data block DB 5, DW 0 to DW 95 (= 3 data fields)

DX 4, 2 data fields

CPU 1
A
DB 5, DB 3,
3 data 4 data
fields fields
DB 5, 3 data fields
CPU 2 CPU 3

Fig. 10-7 Data exchange between 3 CPUs

Function block FB 1 is the interface for the cyclic user program on all
three CPUs. CPU 1 calls the INITIALIZE function (OB 200) during the cold
restart. The link list is in data block DB 100.

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01 10-75

Applications

Application example continued:

Implementation

1. Loading blocks

The following blocks must be loaded in the individual CPUs:

Function CPU1 CPU 2 CPU 3

Restart OB OB 20 — —

User program FB 1 FB 1 FB 1
FB: SEND-DAT FB 100 FB 100 FB 100
FB: RECV-DAT FB 101 FB 101 FB 101
Link list DB 100 DB 100 DB 100
Input DB DB 5 DB 3 DB 5; DX 4
Output DB DB 3; DX 4 /DB 5 —

2. Creating the link list

The link list is created and entered in data block DB 100:

DB100 LEN=37

PAGE 1

——Sub-list1 ——

0: KS ='S1’; Send from CPU 1 to ..

1: KY =001,003; ..CPU2(DB?3)

2: KY =002,004; ..CPU 3 (DX 4)

3: KY =000,000;

4. KS=S2 ; Send from CPU 2to ..

5: KY =001,005; ..CPU1(DBY5)

6: KY =001,005; ..CPU3(DBY5)

7 KY =000,000;

8: KS ='S3’;

9: KY =000,000;

10: KY =000,000;

11: KY =000,000;

12: KS ='S4’;

13: KY =000,000;

14: KY =000,000;

15: KY =000,000;

10-76

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01

Applications

Application example continued:

——Sub-list1 ——

16: KS ='S1’; Send from CPU 1 1o ..

17: KY =002,004; .. CPU 2 (four data fields)
18: KY =003,002; .. CPU 3 (two data fields)
19: KY =004,000;

20: KS = S2'; Send from CPU 2to ..

21: KY =001,003; .. CPU 1 (three data fields)
22: KY =003,003; .. CPU 3 (three data fields)
23: KY = 004,000;

24: KS ='S3;;

25: KY =001,000;

26: KY =002,000;

27: KY = 004,000;

28: KS ='S4’;

29: KY =001,000;

30: KY =002,000;

31 KY = 003,000;

Data words DW 16 to DW 31 contain the assignment list required for the
manual INITIALIZATION function (OB 200).

3. Program OB 200 call in the start-up block OB 20 for CPU 1

OB 200 is called by the OB 20 shown below in CPU 1 during the restart.

OB 20 LEN=yyABS
SEGMENT

0000 L KB 2 Manual initialization of

0001 T FY 246 the pages

0002 :

0003 L KY 1,100 The assignment list is entered
0005 T FW 248 in DB 100 from data word 16
0006 L KF+16 onwards

0008 T FW 250

0009 :

000A L KB 246 SF OB:

000B Ju OB 200 "Initialize"

000C :

000D ‘AN F 252.5 Block end if there is no

O00E ‘BEC initialization conflict

OO0OF :

0010 : The error handling routine
0011 : is inserted here if an

0012 : initialization clonflict

0013 : occurs (e.g. stop, output
0014 : message on printer, or ...)
00xx ‘BE

Continued on the next page

CPU 928B Programming Guide
C79000-B8576-C898-01 10-77

Applications

Application example continued:

4. Program calls for the function blocks in FB 1 of the CPUs:

The user program on each CPU is extended by the RECV-DAT and SEND-DAT
call. Function block FB 1 shown below is for CPU 1. For the other CPUs,
the input parameter CPUN (CPU number) must be modified.

FB1

SEGMENT 1 0000
NAME:EM-SE

0000

0000 :C DB100
0001 JU FB101
0002 ;

0003 NAME :RECV-DAT
0004 CPUN : KF+1
0005 ERWA : FYO
0006 JC =ERWA
0007 :

0008

0009

000A

000B

0ooC

000D

00OE

000F :

0010 :C DB100
0011 :JU FB100
0012 ;

0012 NAME :SEND-DAT
0013 CPUN : KF+1
0014 ERWA : FYO
0015 :JC =ERWA
0016 :‘BEU

0017 ;

0018 ERWA :

0019

001A

001B

001C

00xx ‘BE

10-78

LAN=yy

Link list DB 100
Receive the input
data blocks

Abort if error/warning

Here, the cyclic user program
that reads data from the inpu
data blocks and enters data in
the output data blocks is
inserted.

Link list DB 100
Send the output
data blocks

Abort if error/warning

Run an error handling routine

following an error/warning (here,

the error handling routine is

inserted, e.g. stop, output error
message on printer or screen,
or..)

CPU 928B Programming Guide
C79000-B8576-C898-01

PG Interfaces and Functions 1 1

Contents of Chapter 11

11.1 OV IV W . .« ot et e e e e e e e 11-4

11.2 PG FUNCLIONS. . . .o e e e e e

11.2.1 INfOrmMatioN e
Memory configuration
OULPUL @dAreSS. . . st e e e
11.2.2 Memory Functions and Transfer Functions.
Overall reSet . ..o
COMPrESS MEMOIY . . oottt et e e e e e e e e e e e
Transfer blocK e
Delete DIOCK.
11.2.3 Program TeSt.
ANt/ StOP . . e et
Status bloCK
Program test
Status variables
FOICE . .
Force variables

11.3 Activities at CheCkpointsot e
11.4 Serial Link PG - PLC via 1st or 2nd Serial Interfface. 11 - 19

11.5 Parallel Operation of Two Serial PG Interfaces 11 - 20

11.5.1 InStallation. 11 - 22

11.5.2 OPEIAtION. . . . e e 11 - 22

11.5.3 Sequence in Certain Operating SIituations.t e e 11-24
Parallel operation with short-running functions. 11-24
Parallel operation with long-running functions 11-25
Parallel operation with cyclic functions. 11-25

CPU 928B Programming Guide
C79000-B8576-C898-01 11-1

PG Interfaces and Functions 1 1

CPU 928B Programming Guide
C79000-B8576-C898-01

This chapter explains how to connect your PG to the CPU 928B and
the functions provided by the PG software with which you can test
your STEP 5 program.

If you only use the standard PG interface (1st serial PG interface) you
do not need to read Section 11.5. This section tells you about further
interfaces with which you can connect a PG to your CPU. It also
contains points to note if you use PG functions on both interfaces.

11-3

Overview

11.1 Overview

11-4

You can load and test your user program using the online functions of
the STEP 5 software.

To use these functions, the CPU must be connected to the PG. The
following interfaces are available for this link:

« link via the serial standard interface "PG - PLC",
« link via the 2nd serial interface of the CPU 928B.
The PG functions can operate simultaneously on the two serial

interfaces. PG functions provide the following support for installing
and testing your STEP 5 program:

Table 11-1 Functions for installation and testing

Function Section
Info
Size of the internal RAM and "Memory configuration”
free user memory
List of loaded blocks "Output DIR"
Display contents of memory "Output address"

words/bytes and I/O bytes
Memory management

Delete the whole memory "Overall reset"

Create more memoty space "Compress memory

Manage blocks "Transfer/delete blocks"
Program test

Start/stop CPU "Start/stop"

Test the operation sequence in a "Status block"

block

Test single program steps "Program test"

Display signal state of process "Status variables"

variables

Output signals in the stop mode "Force"

Display/change process variables "Force variables"

CPU 928B Programming Guide
C79000-B8576-C898-01

PG Functions

11.2 PG Functions

Calling and using functions

Execution

System checkpoints

User checkpoints

CPU 928B Programming Guide
C79000-B8576-C898-01

Note

The terms used in this section for the PG functions may in some
cases differ from the terms in your PG software.

Please refer to your STEP 5 manual.

How to call and use the individual PG functions is described in the
STEP 5 manual.

The PG functions are executed at defined points in the programmable
controller. There are points in the system program (= system
checkpoints) and points in the user program (= user checkpoints).

In the STOP mode there is the system checkpsinop” that is called
regularly.

In the RUN mode there is the system checkpaintle' that is called
at the end of the program processing level CYCLE before the process
image is updated.

If the CPU is in the WAIT state, the system checkpointit' state” is
called regularly.

There is also a time-dependent system checkpasytichronous.
This system checkpoint is inserted asynchronously during program
execution.

In the test functions STATUS and PROGRAM TEST, user
checkpoints are used. A user checkpoint is called when a command is
executed that is marked accordingly by the PG.

11-5

PG Functions

WAIT STATE

Features of the wait state

Interrupts

11.21
Information

Memory configuration

11-6

So far you have come across the modes STOP, RESTART and RUN.
When using the online function PROGRAM TEST, the CPU has a
fourth mode, the WAIT STATE. When the CPU is in the WAIT
STATE, you can call further online functions.

The user program is not processed in the wait state.

» LEDS on the front panel: RUN-LED: off
STOP-LED: off
BASP-LED: on

« All the timers are "frozen", i.e. no timers amning(i.e. the
timers are not changed). All system timers such as for closed loop
control and time-driven processing are also stopped.
Once the CPU exits the WAIT STATE the timers start running
again.

» Causes of interrupts, for example PEU, BAU, MPSTP or the stop
switch are registered in the WAIT STATE, however, there is no
reaction.

If causes of interrupts are registered in the WAIT STATE, the
appropriate program processing levels are called immediately after the
WAIT STATE is exited.

If NAU occurs, the WAIT STATE is exited and the PROGRAM
TEST online function is aborted. Following POWER ON, BARBEND
is marked in the control bits. You can only exit the stop mode with
COLD RESTART.

The "Memory configuration" programmer function shows you the
highest usable address of the RAM submodule ("0" is displayed in the
case of EPROM) and the last address of the memory submodule
occupied by blocks of the user program.

CPU 928B Programming Guide
C79000-B8576-C898-01

PG Functions

Output address

11.2.2
Memory Functions and
Transfer Functions

Overall reset

Compress memory

CPU 928B Programming Guide

C79000-B8576-C898-01

With the "output address" function, you can display the contents of
memory and I/O addresses in hexadecimal format. You can access all
addresses (RAM, S5 bus, areas with no modules assigned). In the
process image area no ADF is triggered, in the I/O area there is no
QvZ.

In the areas addressed as bytes (flags, process image) the high byte is
represented as 'FF'.

In the I/O area, the high byte is output as "00" in the case of
acknowledging addresses. If an I/O module does not acknowledge, the
high byte is displayed as "FF".

With the function "delete all blocks" you can carry out an ovesat
of the CPU from the PG. The overall reset is carried out
unconditionally (refer to Section 4.3.2).

If the CPU is in RESTART or RUN when "Delete all blocks" is
called, a transition to the Stop state is executed first. Organization
block OB 28 is called here if it is loaded.

Note
Overall reset is not permissible as long as "Program test" is achve!

This function optimizes the memory space occupied by blocks. The

space taken up by blocks marked as invalid is overwritten by the valid

blocks of the user program (the block is rewritten to a different

memory area). Following this, the blocks are located from the
beginning of the memory, one after the other without gaps between

them.

This function is performed separately in the RAM submodule and in

the DB RAM and is executed at the system checkpoints "cycle" and
"stop".

With the CPU 928B, the COMPRESS MEMORY function is always
possible in the STOP mode, even if the BSTACK is not empty.

11-7

PG Functions

A

Power down during
compressing

Errors in the block memory

Transfer block

11-8

Caution

After COMPRESSING memory in the STOP mode, you can only
restart with a COLD RESTART. The ISTACK and BSTACK ar
not updated.

If there is a power down during the compressing function, no further
block is rewritten. If you call the COMPRESS MEMORY function
again following the return of power, the function is continued.

The COMPRESS MEMORY function detects the following errors in
the block memory:

» wrong block length
« corrupted pattern "7070" in the block header
« invalid block type (with OBs invalid block number).

The function is then terminated and a message is displayed at the PG.
You must then perform an overall reset. The function can only be
called again following the overall reset.

Note
You cannot use the COMPRESS MEMORY function as long a
the PROGRAM TEST is active.

With this function you can transfer new or existing logic and data
blocks to the user memory of the CPU or to the internal DB-RAM of
the CPU.

If a block already exists in the user memory of the CPU, it is declared
invalid and the new block becomes valid. A block will only be
declared invalid when it is not being processed.

CPU 928B Programming Guide
C79000-B8576-C898-01

PG Functions

Delete block

11.2.3
Program Test

Start/stop

CPU 928B Programming Guide
C79000-B8576-C898-01

With this function you declare a logic or data block in the user
memory as invalid. A block will only be declared invalid when it is
not being processed.

The space occupied by these blocks can be used for other blocks via
the "Compress memory" function.

When you use the START and STOP PG functions, operating the PG
corresponds to manual operation.

You can put the programmable controller into the STOP mode by
calling the STOP function while the controller is in the RUN mode.

You will see the following display for the CPU connected to the PG:
STOP-LED: on
BASP-LED: off

PG-STP is marked in the control bit display. In multiprocessor
operation, the MP-STP control bit is set for the other CPUs.

You exit the SOFT STOP status with a COLD RESTART or WARM
RESTART. In the single processor mode, the CPU exits the stop
mode. In multiprocessor operation, the restart type is registered
initially (the NEUST or MWA control bit is set). However, the CPU
stays in the soft STOP mode until all CPUs are initialized for
multiprocessing. With the next operation "system start" you can start
the programmable controller. This corresponds to operation via the
coordinator (switch to RUN).

You can call the START PG function in the multiprocessor mode to
select the restart type you want for all the CPUs you are using. After
that, you can start the programmable controller with the last CPU.

e COLD RESTART PG function:
MANUAL COLD RESTART of the CPU is executed.

« WARM RESTART PG function:

Depending on the setting in DX 0, MANUAL WARM RESTART
or RETENTIVE MANUAL COLD RESTART is executed.

11-9

PG Functions

Status block

Calling the function and

specifying a breakpoint

Calling the function in the
STOP mode

Nesting and interruptions

11-10

You can call the "status" PG function to test related operational
sequences (STEP 5 operations) in one block at any location in the user
program.

The current signal status of operands, the accumulator contents, and
the RLO are output on the PG screen for every executed operation in
the block (i.e., step mode). You can also use this function to test the
parameter assignment of function blocks (i.e., field operation):

The signal status of the actual operands is displayed.

When you call the "status" function on a PG and enter the type and
number of the block you want to test (possibly including the nesting
sequence and search key), you enter a breakpoint.

When the "status" function is called during program processing in the
RUN mode, program processing continues until it reaches the
operation marked by the specified breakpoint in the correct nesting
sequence. Then the system program executes each of the monitored
operations up to the operation boundary, outputting the processing
results to the PG.

You can auch activate the STATUS function in the STOP mode. You
can then carry out either a COLD RESTART or a MANUAL WARM
RESTART. The CPU executes the program up to the marked
operation. The data for the desired operation are then output. This
means that the "Status" function is also suitable for, e.g., testing the
user program in restart or in the first cycle.

Note
The results of operation processing are not output in each of the
program cycles.

A sequence of operations marked by a breakpoint is completed even if
a different program execution level (e.g., an error OB or interrupt OB)
is activated and processed. With this you can see whether data has
been changed by nested program sections.

If an interruption in a nested program execution level puts the CPU
into the STOP mode, data is output up to the operation that was
executed before the program execution levels changed. The data of
the remaining operations is padded with zeros (the SAC is also 0).

If the CPU changes from one operating mode to another (e.g., RUN -
STOP - MANUAL WARM RESTART), the function remains active.
"Status” is terminated by pressing the abort key on the programmer.

CPU 928B Programming Guide
C79000-B8576-C898-01

PG Functions

Program test You can call the "program test" function to test individual program
steps anywhere in your user program. When you do this, you stop
program processing and allow the CPU to process one operation after
the other. The PG outputs the current signal status of operands, the
accumulator contents, and the RLO for each operation executed.

Calling the function and To call the "program test" function, specify tigpe andnumber of
specifying the first the block (if necessary with nesting sequence) you want to test. At the
breakpoint PG, mark the first operation, whose data are to be output. This is how

you specify the first breakpoint.
BARB is marked in the control bits. Command output is disabled
(BASP LED = on).

Caution

If you set Test mode on the coordinator, enter the block type and
block number (if necessary, with nesting sequence) of the blocl
A to be tested. At the PG, mark the first operation whose data are to
be output.

This is how you specify the first breakpoint.

BARB is marked in the control bits. Command output is disabled
(BASP LED = on).

Calling in RESTART and in When you specify the first breakpoint durimgpgram processing

RUN the CPU continues processing the program until it reaches the
operation marked by the specified breakpoint. The operation is
executed up to the operation boundary. (The DO FW and DO DW
operations are processedluding the substituted operation.)
The CPU then goes to the WAIT STATE. The data of the marked and
last executed operation are output there.

Calling test functions in SOFT You can also call the "program test" function and specify an initial

STOP breakpoint when the CPU is in the soft STOP mode. The CPU
remains in the soft STOP mode, and you can execute either a COLD
RESTART or a MANUAL WARM RESTART. The CPU processes
the program up to the marked operation and it proceeds as outlined
above.

CPU 928B Programming Guide
C79000-B8576-C898-01 11-11

PG Functions

Executing the function and
specifying another
breakpoint

11-12

Initial situation: the CPU is in the WAIT STATE.
To continue the function, you have two possibilities:
1. Specify the next operation as tb#owing breakpoint:

Move the cursor down to the next operation to specify the following
breakpoint.

The CPU continues by processing this operation up to the operation
boundary. Then the CPU outputs the data and waits for further
instructions from the PG.

However, if a nested program

execution level interrupts operation processing at the following
breakpoint, the CPU processes the nested program first. Then
the CPU returns to the 2nd breakpoint that you specified.

Note
You cannot specify a following breakpoint when the CPU is in
the STOP mode.

2. Specify anew breakpoint:

At the PG, specify any other operation in the same block

or in a different block. The CPU continues program processing
until it reaches the new breakpoint. The operation is processed
fully. The CPU then goes to the WAIT STATE and outputs

the data there.

You can also run the program through a whole cycle (cyclij; tas
setting the breakpoint at the same operation as previously in the
WAIT STATE. Remember, however, that the operation must not be
in a program loop. In this case, the loop is run through once; and the
program execution does not go beyond the end of the cycle.

Note

You can call other functions, such as OUTPUT DIR, STATUS
VARIABLES or FORCE VARIABLES in the WAIT STATE.
Once program execution is continued after exiting the WAIT
STATE, the timers and system timers continue to run until the
next breakpoint is reached.

CPU 928B Programming Guide
C79000-B8576-C898-01

PG Functions

Cancelling the If a specified breakpoint has notyet been reached, you can cancel it

breakpoint by pressing the break key on the PG. The CPU then changes to the
WAIT STATE. You can then select a new breakpoint or call
PROGRAM TEST END.

Aborting the function If you call the PROGRAM TEST END function during program
execution, in the WAIT STATE and in the STOP MODE, you can
terminate the function. The CPU goes to the STOP mode (or remains
in the STOP mode). The STOP LED flashes slowly. BARBEND is
marked in the control bits. Following this you must perform a COLD
RESTART.

If an interface error (break on the PG cable) or NAU occurs during the
PROGRAM TEST function, the function is terminated as described
above.

Nesting When the PROGRAM TEST function is active, other program
processing levels can be inserted after the WAIT STATE is exited.

When the operation is processed at the breakpoint and if a different
program processing level is called at this point (e.g. an error OB, a
process interrupt or a time-driven interrupt) this is inserted and
completely processed only when the WAIT STATE is exited again.

Note

The data are read at the operation boundary and output there.
Program processing levels which may have been inserted after
this point are not yet processed.

The sequence of the "program test" function is illustrated in Fig. 11-1.

CPU 928B Programming Guide
C79000-B8576-C898-01 11-13

PG Functions

Execute ope-

1st breakpoint — | ration and
read data

WAIT STATE (output data)

Process interrupt, timed
EreeX;kpoim g < cesss interrupt, error OB
Execute ope-
ration and
read data

WAIT STATE (output data)

|

|

w < <<<<< Process interrupt, timed
| ‘ interrupt, error OB

|

|

Fig. 11-1 Sequence of "program test"

If requests such as PEU, MP-STP, stop switch etc. occur during the
WAIT STATE, these are only registered. These can become active
immediately after the CPU exits the WAIT STATE: A program
processing level is inserted or an interrupt leads to the STOP mode.
The reaction depends on the order in which the events occurred.
Simultaneous requests have an order of priority.

Note

When the CPU is in the WAIT STATE and the insertion of a
program processing level is requested, you can set a breakpoint at
an operation in the inserted program section. This allows you, for
example, to monitor the QVZ error OB immediately after an
operation that triggers a QVZ.

CPU 928B Programming Guide
11 - 14 C79000-B8576-C898-01

PG Functions

Interruptions e Program processing (RESTART/RUN) STOP mode:
If an interruption occurs during program processing (e.g.,
multiprocessor stop, I/O not ready/STOP, error OB not
programmed etc.) before the program reaches the specified
breakpoint, the CPU goes into the STOP mode immediately. If
you execute a COLD RESTART or a MANUAL WARM
RESTART, the "program test" function is still in effect and the
breakpoint is still set.

» Program processing at breakpoint (RESTART/RUN) STOP
mode:

If stop conditions occur at the breakpoint or following breakpoint
during program processing, the CPU goes directly into the soft
STOP mode and outputs the data.

If you do not specify a new breakpoint while the CPU is in the
STOP mode, the "program test" function is still in effect after the
restart.

+ Wait state -~ STOP

Causes of interrupts occurring in the WAIT STATE (e.g. MP-STP,
PEU, I/0O not ready, stop switch) or resulting from the previous
operation (error causing the CPU to stop) are registered, however,
the CPU remains in the WAIT STATE. The causes of interrupts
only bring about a transition to the STOP mode after you have
specified a new breakpoint in the WAIT STATE and the CPU has
exited the WAIT STATE. The specified breakpoint is not reached.
If you then carry outa RESTART (COLD RESTART or

MANUAL WARM RESTART) the new breakpoint remains set.

Note

If you switch the CPU to stop using the stop switch while it is in
the WAIT STATE, it only goes into the STOP mode after exiting
the WAIT STATE.

If causes of interrupts bring the CPU to the STOP mode during
the PROGRAM TEST, the PROGRAM TEST function (and any
breakpoint you may have specified) remain active after the restart.

CPU 928B Programming Guide
C79000-B8576-C898-01 11 -15

PG Functions

Status variables

The function during program
execution

The function in the STOP
mode

The function in the WAIT
STATE

Changing the operating
state/terminating the function

11-16

Using the "status variables" function, you can display the current
signal states of certain operands (process variables).

The function activates system checkpoints in the CYCLE, in the
STOP MODE and in the WAIT STATE.

When a checkpoint is reached, the PG displays the present signal
status of the desired process variable. You can specify all process
variables (inputs, outputs, flags, timers, counters and data words). No
addressing error (ADF) is triggered in the process image area when
accessing an address for which there is no 1/0 available.

If the function is activated in the RESTART or RUN modes, program
execution is continued until the system checkpoint "cycle" is reached.
The signal states of the operands are then scanned and output at the
end of the cycle. Inputs are read from pinecess image Providing

the function is not aborted, the signal states are updated during
program execution. In this case the signal states are not scanned at
every system checkpoint.

If the system checkpoint "cycle" is not reached, the signal states are
not output (e.g. in a continuous loop in the user program).

If the STATUS VARIABLES function is active in the STOP mode,

the signal states of the operands are output as they stand at the system
checkpoint "stop". The important point to note here is thanihas

are scannedirectly (not from the process image) and output. This
feature, for example, allows you to check whether an input signal
actually reaches the CPU. Even in multiprocessor operation, you can
specify all inputs regardless of the assignment in DB 1. The outputs

are read from the process image.

You can also call the STATUS VARIABLES function when the CPU

is in the WAIT STATE caused by the PROGRAM TEST function.

The signal states of the operands are scanned at the system checkpoint
"wait state" and output. As in the stop mode, the inputs are scanned
directly and the outputs are read from pinecess image

When the CPU changes from one mode to another (e.g. RUN
STOP - MANUAL WARM RESTART), the function remains
activated. STATUS VARIABLES is terminated by pressing the break
key on the programmer.

Note
The variables are not output in every program cycle.

CPU 928B Programming Guide
C79000-B8576-C898-01

PG Functions

Force Using the FORCE function you can set the output bytes of the
programmable controller to a particular signal state directly (avoiding
the process image) or you can recoghize process interface modules
(digital peripherals O to 127) that do not acknowledge (message on the
PG). You can check and directly control the process devices
(actuators e.g. motor, valve) supplied with signals by the outputs.

Note
The "force" function is only permitted in tiséop mode.

Function sequence When you call the function in the STOP mode, the command output
disable function is cancelled (BASP = inactive). Wimle digital
peripheral area (FOOOH to FO7FH) is cleared, and the value "0" is
written to each address. You cannot interrupt this function while the
peripherals are being cleared.

The peripheral outputs are forced in bytes directly and without
affecting the process output image.

In multiprocessor operation, you can foedeperipheral outputs
(regardless of the peripheral assignment in DB 1).

When the function is active (message "End of force fct" on the PG),
you can perform a COLD RESTART or a MANUAL WARM
RESTART. If the CPU once again changes to the STOP mode, you
can use the force function again. The process interface outplui@s
arenot clearedin this case.

Terminating the function You terminate the function by pressing the break key on the PG. The
command output disable function is once again activated
(BASP LED = on).

Force variables Using the PG function FORCE VARIABLES, you can change the
values of operands (process variables) once. You can do this in any
CPU mode. You can specify all process variables. If you attempt to
access an address in the range of the process image for which there is
no I/O, no ADF is triggered.
The modification becomes effective asynchronously to the system
checkpoints, i.e. not till the end of the cycle. Remember that the

forced values can be overwritten later (e.g. by the user program or
when the process image is updated).

Note
The PG forces the |, Q and F process variables in bytes and th
DW, T and C variables in words.

[

If you forceseveal operands, the modified bytes (for DW, T
and C the words) are changed in the CPU memory, distributed
over several function calls.

CPU 928B Programming Guide
C79000-B8576-C898-01 11 - 17

Activities at Checkpoints

11.3 Activities at Checkpoints

The table below shows you which activities of the PG functions are
executed at the checkpoints.

Table 11-2 Activities at checkpoints

System checkpoint

Activities of the online User
"Stop" |"Cycle" | "Wait "Asyn- check-
functions state” | chronous| point

Input of the address:

write data 1 * * .
Block input:

declare block as valid * * * *
Delete block * * *

Compress memory:

shift blocks 12 P) %

START/STOP * * * *
OVERALL RESET * *

STATUS: read and output data *

STATUS VARIABLES: read
and output data * * *

PROGRAM TEST:

preset breakpoints * * * *
read and output data *
FORCE (process interface modui'és) *
FORCE VARIABLE D« * * *

D Activities distributed over more than 1 system checkpoint
2 Maximum one block per system checkpoint

%) After compressing the memory in STOP, only COLD RESTART [teeth

CPU 928B Programming Guide
11-18 C79000-B8576-C898-01

Serial Link PG - PLC via 1st or 2nd Serial Interface

11.4 Serial Link PG - PLC via 1st or 2nd Serial Interface
For the serial link PG - PLC there are the following possibilities:
» Direct link to the CPU via the standard cable.
» Link to the PG via the coordinator COR 923C. In this case the PG
is connected via the cable to the coordinator. This means that the

1st serial interface is no longer available.

e Link to the PG via a PG multiplexer 757. The permitted cables can
be found in the S5-135U/155U System Manual (/2/ in Chapter 13).

e Link to the PG via SINEC H1/L2/L1 and "swing cable"; the
COR 923C or PG multiplexer can be connected in the link.

CPU 928B Programming Guide
C79000-B8576-C898-01 11-19

Parallel Operation of Two Serial PG Interfaces

11.5 Parallel Operation of Two Serial PG Interfaces

You can use the second interface on the CPU 928B (SI Z3@s a
interface in exactly the same way as the first interface.

To be able to link your PG via this interface, you must also order the
PG interface module in addition to your CPU 928B (the order number
is listed in the S5-135U/155U System Manual /2/).

o

(XX 1 e 1 1 Jel

[
M Interface =
submodule - PG
]
dIE PG fip il .0
SI2 LN R
o [

=

—_ PG
L

=

U

Fig. 11-2 Using the second interface as a PG interface

All the PG functions are available on both interfaces. The following
sections contain only the information thatyou require if you work
with PGs or OPs on both interfaces simultaneously.

CPU 928B Programming Guide
11-20 C79000-B8576-C898-01

Parallel Operation of Two Serial PG Interfaces

Examples of configurations

CPU 928B CP 143 — SIL PG connected via SINEC H1 and COR C

— SI2 PG connected directly

—
=)

!
IR
il

—=
—
=)

R E]

"swing cable"

SINEC H1

| [
)
B

LU A0

fm=1=]

Fig. 11-3 First example of a configuration

CPU 928B SI 1 OP connected directly
(for operating and monitoring
0 0)
R S 2 Fe conmested mecty
11 /0/0|0o
§UICT Tl o
e maEEEE|

e
==
= —

-_g

A

Fig. 11-4 Second example of a configuration

CPU 928B Programming Guide
C79000-B8576-C898-01 11-21

Parallel Operation of Two Serial PG Interfaces

11.5.1
Installation

11.5.2
Operation

11-22

A

To use the second interface of the CPU 928B as a PG interface,
follow the steps outlined below:

Step

Action

1 Install the PG submodule in the CPU 928B.

2 Connect the PG to the serial interf&i2.

If you use the second interface as a PG interface then initially the full
range of functions of the standard PG interface is available on each

interface. This remains true, providing the individual functions do not
influence each other, i.e., called sequentially one after the other.

To understand the exceptions to this, the PG functions can be divided

into three groups:

Group

Name

Short-runningfunctions

Functions that execute a job and then
terminated.
(e.g. "transfer", "delete" etc.)

Long-running functions

Functions that process a fixed numbe
jobs:

- "force",

- "program test".

Cyclic functions

Functions that execute a job repeated
until you terminate them:

- "status block",

- "status variables",

- "force variables".

Caution

With long-running and cyclic functions you must coordinate the
activation of these functions on both PGs.

CPU 928B Programming Guide
C79000-B8576-C898-01

are

of

y

Parallel Operation of Two Serial PG Interfaces

The table below lists the pairs of functions that yatanot work with
simultaneously.

Table 11-3 Functions which cannot run simultaneously on both PGs

Function active You must not activatehis
on the first PG: function on the second PG
"Force" Any function

"Program test’ Any function

A "status" function” "Force"

A "status" function" "Program test"

A "status” function” "Overall reset”

"Status" on long running blocks|Any function

or blocks which are not processed

If you attempt to start one of the illegal functions, the second PG
displays an error message, €'8.S function disabled: function
active".

The same error message'Overflow in data exchange with PG"
appears if the CPU 928B is currently processing functions of the other
PG, which prevent your PG accessing the CPU within the monitoring
time. Your input is then rejected. Repeat your input once the functions
are completed on the other PG.

Note
Owing to the different performances and range of functions, time
monitoring and the response to errors is not identical in all PGs
and OPs.

If you activate the function "memory configuration”
simultaneously on both PGs, the displays may be incorrect.

Caution
If you input, correct or delete blocks online on both PGs
A simultaneously, you must make sure that the blocks are not
protected by the other PG before you access them.
"Status" of a block which is not processed or "status" in the STOP
mode blocks the other interface for all functions.

CPU 928B Programming Guide
C79000-B8576-C898-01 11-23

Parallel Operation of Two Serial PG Interfaces

11.5.3
Sequence in Certain
Operating Situations

Parallel operation with If you work with PGs on both interfaces simultaneously, both PGs

short-running functions want to execute their functions independently of each other. As long
as they stagger the jobs they send to the CPU, the jobs will be
processed in the order in which they arrive.

The situation may, however, arise that the CPU 928B either receives
two jobs simultaneously or receives a job from the second PG while a
job from the first PG is still active.

Since simultaneous processing is hot possible, the jobs are processed
one after the other; the second job is, however, delayed by such a
short time that it is hardly noticeable for the user.

When jobs are sent simultaneously, the sequence is as follows:

User on PG 1 CPU 928B User on PG 2
Input at keyboard of PG 1 ~ —» Input at keyboard of PG 2
Interpretation of input 1 in PG 1 Interpretation of input 2 in PG 2

Job 1 transferred to the CPU

Job 1 processed in the CPU
Results of job 1 transferred to PG 1

Here PG 2 must wait
until the CPU
processed job 1.

* % * %

. . — Job 2 transferred to the CPU
Results of job 1 interpreted

. . Job 2 processed in the CPU
Results of job 1 displayed <«
on PG 1 Results of job 2 transferred to PG 2

Results of job 2 interpreted at PG 2

—» Results of job 2 displayed on PG 2
Fig. 11-5 Handling simultaneous jobs

From this sequence, you can see that both PGs can operate
independently from each other, but that the one nevertheless affects
the other.

Itis possible that both PGs process the same block simultaneously or
that a block currently being processed by one PG is deleted by the
other PG.

With this configuration, you must always take into account the way in
which input at one PG affects the other PG.

CPU 928B Programming Guide
11-24 C79000-B8576-C898-01

Parallel Operation of Two Serial PG Interfaces

Parallel operation with The long-running functions "force" and ""program test" cannot
long-running functions interrupt other functions and cannot be interrupted by other functions.
They can therefore not be executed parallel to other functions,
i.e. they are treated as a standard job "en bloc".

Parallel operation with Cyclic functions can be executed both parallel to other cyclic and to
cyclic functions short-running functions. The following example shows the standard
sequence of the "status variables" function.

User on PG 1 CPU 928B User on PG 2

PG 1 informs the CPU
of the variables
to be output.

PG 1 requests the
current data.

mil
1L

PG 1 requests the)
current data. Fﬁ PG 2 sends a job
PG 2 must wait until
the CPU is free.

PG 1 requests the
current data.

Job sent by PG 2 is processed

1 PG 2 job is complete

PG 1 must wait until
the CPU is free.

PG 1 requests the

<«

o
current data. >

<

Fig. 11-6 Typical sequence of a cyclic function and parallel short-running function

CPU 928B Programming Guide
C79000-B8576-C898-01 11-25

Parallel Operation of Two Serial PG Interfaces

11-26

To allow a second PG to send a job to the CPU, the status function is
interrupted between two requests and then continued on completion of
the inserted job. Since the interrupting function requires CPU

facilities, the whole CPU system facilities must be divided between

the two functions, e.g. the updating of the data output by the "status
variables" function takes somewhat longer.

With both PGs working simultaneously, the sequence shown in Figure
11.7 results.

This also applies when cyclic functions are active on both PGs; the
two PGs then access the PLC alternately.

CPU 928B Programming Guide
C79000-B8576-C898-01

Parallel Operation of Two Serial PG Interfaces

User on PG 1 CPU 928B User on PG 2

PG 1 informs the CPU
of the variables —»
to be output.

<

PG 1 requests the —M
current data.
PG 1 requests the +
current data. Fﬁ PG 2 sends the first job

PG 2 must wait until

the CPU is free.
PG 1 requests the —
current data. First job of PG 2 is processed

PG 1 must wait until
the CPU is free.

PG 2 sends second job

1 First job of PG 2 complete

PG 1 requests the -
current data. >
Second job sent by PG 2 is processed
PG 1 must wait until
the CPU is free.
— Second job of PG 2 complete
47

Fig. 11-7 Sequence of two parallel cyclic functions

CPU 928B Programming Guide
C79000-B8576-C898-01 11 - 27

Parallel Operation of Two Serial PG Interfaces

Special feature with cyclic If the interrupting function blocks the CPU 948 ("status" in a block
functions on both PGs that is not executed) the interrupted function is also blocked. It can
only be resumed when the interrupting function is terminated.

When working simultaneously with two PGs, the following sequence
results:

User on PG 1 CPU 928B User on PG 2

PG 1 informs the CPU

of the variables
to be output.

PG 1 requests the
current data.
(PG signals: status

processing active)

PG 1 requests the
current data. PG2 sends a new job
(e.g. "Status PB 9").
PG 2 must wait until
the CPU is free.

Pra— .
PG 1 requests the Job sent by PG 2 is processed
current data.
(PG signals: status processing active)
) . (PG signals: statement
PG 1 must wait until not processed)

the CPU is free.

PG 2 aborts the STATUS function;
The CPU processes the abort request

<«— PG 2 job complete

PG 1 receives new data

<«

Fig. 11-8 Sequence when a function blocks the CPU 928B

General notes If "status variables", "force variables" (with the status display) or
"status"” is output onneinterface and "compress memory", "delete
block" or "transfer block" on thether, the status display can be
corrupted.

CPU 928B Programming Guide
11-28 C79000-B8576-C898-01

Appendix 1 2

Contents of Chapter 12

Appendix 1: Technical Data of the CPUs inthelS5U. i, 12-4
Appendix 2: Error ldentifiers. 12 -7
Error IDs in System Data Words RS3and RS4 12 -7
Error IDs in ACCU 1 and ACCU2Zottt e e 12 - 10
Appendix 3: STEP 5 Operations not Containedinthe CPU928B............. 12 - 16
Appendix 4: ldentifiers for the Program Processing Levels 12 - 17
Appendix 5: Example "ISTACK Evaluation”. e 12 - 18

CPU 928B Programming Guide
C79000-A8576-C898-01 12 -1

Appendix

CPU 928B Programming Guide
C79000-A8576-C898-01

12

This chapter gives you additional information on the CPU 928B, such
as runtime comparison between the CPU 922, CPU 928 and

CPU 928B, error IDs and level IDs and other information and
explanations useful for error diagnostics

12-3

Appendix 1: Technical Data of the CPUs in the S5-135U

Appendix 1: Technical Data of the CPUs in the S5-135U

Operation / processing CPU 922 CPU 928 CPU 928B
Typical operation execution times for bit operations:
with
F 1, Q 22 ps 1us 0.57 us
D 37 us 34 pus 3.4 ps
formal operands 46 ps 25 ps 2.4 us
Typical operation execution times for word operations:
- load operations
L FY (byte) 15 ps 12 ps 0.81 ps
L FW (word) 15 ps 12 ps 0.94 ps
L FD (double word) 20 ps 16 us 1.6 ps
- fixed point arithmetic 26 ...50ps 13...24ps 0.94... 10 ps
- floating point arithmetic 51...86us 29 ... 69ps 9.1... 23ps
Cyclic program execution (single processor mode)
Basic time calling OB 1/FB O: 107/119 ps 147/149us 170/172us
Additional time for updating the
process image dependent on the
number of I/O bytes (n) 33 us 18 us 18 us
where 0 <128 +n*6 us +n*1.58ps +n*213us
Additional time for transfer of n < 128:
IPC flags depending on the 18 us
number of IPC flags (n) +n*2.38us
where 0 < rx 256 35 ps 19 ps
+n*6.5pus +n*1.84ps n> 128:
36 us
+n*2.38us
Additional time for timer
processing depending on the
timer field length (TFL) every 2.5 ms every 10 ms every 10 ms
TFL =0 50ps 5 ps 1 pus
TFL #0 60 ps 200 ps 20 us
n = number of currently + TFL * 1.56us +n*0.35ps +ZBL*1 ps
active timers (time base: 10 ms) +n*1.24 ps (where (no difference
0<ns< 128) between active
400ps + and inactive
n * 0.35pus timers)
(where
128 <rx256)

12 -4

CPU 928B Programming Guide
C79000-A8576-C898-01

Appendix 1: Technical Data of the CPUs in the S5-135U

Operation / processing CPU 922 CPU 928 CPU 928B
Interrupt-driven program processing
Extension of the cycle time by
inserting an empty OB 2
(without STEP 5 operations)
at an operation boundary 368 330 us 492 us
Response time 300 ps 280 pus 297 ps
Time-driven program processing
Extension of the cycle time by
inserting an empty OB 13 340 ps for the 440 s for the
(without STEP 5 operations) first time first time
at an operation boundary 375 us interrupt OB interrupt OB
180 us for 200 us for
each further each further
interrupt OB interrupt OB
due at the due at the
same time same time
Clock pulse for calling the time-driven 10, 20, 50, 100, | 10, 20, 50, 100,
program 100 ms 200, 500 ms, 200, 500 ms,
(Time interrupt OB 10 to OB 18) 1,2,5sec 1,2,5sec
Resolution times for clock-driven time
interrupt (OB 9) - - every minute,
every hour,
every day,
every month,
every year,
once
Resolution time for delay interrupt (OB 6)
- - 1ms
Cycle time monitoring
default 150 ms 150 ms 150 ms
selectable between 1...4000 ms 1...6000 ms 1 ... BO00 ms
triggerable yes yes yes
CPU 928B Programming Guide
C79000-A8576-C898-01 12-5

Appendix 1: Technical Data of the CPUs in the S5-135U

Operation / processing CPU 922 CPU 928 CPU 928B

Si

ze of the memory

Size of the user memory

(in Kbytes) per submodule 64 64 64
Size of the memory for data blocks
(DB-RAM, in Kbytes) approx. 22.2 approx. 46.6 approx. 46.6

Timers and counters, flags

Number of timers and counters 128 each 256 each 256 each

Number of flags

2048 flags 2048 flags 2048 flags
+ 8192 S flags

Definition of terms

Basic time

Response time

12-6

The basic time is the part of the cyclic system runtime required

without updating the process image, without transferring IPC flags
and without interrupts or errors.

The response time is the time from activating the program processing
level PROCESS INTERRUPT for processing the first operation in

OB 2. It is a preredsite that OB 2 can be callédmediately after
recognizing the process interrupt. The response time is extended if the
programwaits until the next operation or block boundary

CPU 928B Programming Guide
C79000-A8576-C898-01

Appendix 2: Error Identifiers

Appendix 2: Error Identifiers

Error IDs in System
Data RS 3 and RS 4

RS 3 RS 4 Explanation

Structure of the block address lists
(Evaluation of DB 0)

8001H | yyyyH | Wrong block length

yyyy = addressof the block with the wrong length

8002H | yyyyH | Calculated end address of the block in the memory is wrong
yyyy = block address

8003H | yyyyH | lllegal block ID

yyyy = addressof the block with wrong ID

8004H | yyyyH | Organization block number too high (permitted: OB 1 to OB 39)

yyyy = address of the block with wrong number

8005H | yyyyH | Data block number O (permitted: DB 1 to DB 255)

yyyy = address of the block with the wrong number

Structure of the address Ists for updating the process imge
(Evaluation of DB 1)

0410H | yyyyH |lllegal iD:

- header ID missing or incorrect (correct KS MASKO01)

- ID illegal (permitted KH DEOO, DA0O, CE00, CA00, BB0O)
- end ID missing or incorrect (correct KH EEEE)

yyyy = illegal ID

0411H | yyyyH | "Digital iputs" , number of addresses illegal (permitted O ... 128)
yyyy = illegal number of addresses

0412H | yyyyH | "Digital outputs" , number of addresses illegal (permitted O ... 128)
yyyy = illegal number of addresses

0413H | yyyyH | "IPC inputflags", number of addresses illegal (permitted O ... 256)
yyyy = illegal number of addresses

0414H | yyyyH | "IPC output flags", number of addresses illegal (permitted O ... 256)
yyyy = illegal number of addresses

0415H | yyyyH | lllegal number of timers (permitted: 256)

yyyy = illegal number of timers

0419H | yyyyH | Timeout in the digital inputs

yyyy = address of the non-acknowledged input byte

041AH | yyyyH | Timeout in the digital ioutputs

yyyy = address of the non-acknowledged output byte

041BH | yyyyH | Timeoutin IPC input flags

yyyy = address of the non-acknowledged IPC flag byte

041CH | yyyyH | Timeoutin IPC output flags

yyyy = address of the non-acknowledged IPC flag byte

CPU 928B Programming Guide
C79000-A8576-C898-01 12-7

Appendix 2: Error Identifiers

RS 3 RS 4 Explanation
Evaluation of DB 2
0421H | DByyH | Data
yy = number of the non-loaded data block
0422H | FByyH | Function block not loaded
yy = number of the non-loaded function block
0423H | FByyH | Function block not recognized
yy = number of the non-recognized function block
0424H | FByyH | Function block loaded with wrong PG software
yy = number of the function block
0425H | DByyH | Wrong closed loop controller data block length
yy = number of the data block
0426H - There is not enough space in the DB RAM to shift the closed loop
controller DB from the user EPROM to the DB RAM
Evaluation of DX 0
0431H | yyyyH | lllegal ID
-header ID missing or incorrect (correct KS MASKXO0)
-field ID illegal
-end ID missing or incorrect (correct KH EEEE)
yyyy =illegal ID
0432H | yyyyH | lllegal parameter
yyyy = illegal parameter
0434H | yyyyH | lllegal number of timers (permitted: 0...256)
yyyy = wrong number of timers
0435H | yyyyH | lllegal cycle monitoring time (permitted: 1ms to 13000ms)
yyyy = incorrect time
Evaluation of DX 2
0451H - DX 2 length (without block header)< 4 words is not permitted
0452H | yyyyH | DX 2 length (without block header) is too short for the link type
yyyy = length of DX 2
0453H | yyyyH | Type of link illegal
yyyy = link type
0454H | xx00H | Data iD for static parameter set illegal (not 44H, 58H)
xx = data ID
0455H | xxyyH | Block for static parameter set illegal
xx = ID /yy = DB number
0456H | xxyyH | Static parameter set does not exist
xx = ID /yy = DB number
0457H | yyyyH | Static parameter set too short
yyyy = number of the non-existent DW
0458H | xx00H | Data ID for dynamic parameter set illegal (not 44H, 58H, O0H)
xx = data ID
0459H | xxyyH | Block for dynamic parameter setillegal
xx =D /yy = DB number
0045AH| xx00H | Data ID for send mail box / job mail box illegal (not 44H, 58H,00H)

xx = data ID

12-8

CPU 928B Programming Guide
C79000-A8576-C898-01

Appendix 2: Error Identifiers

RS 3 RS 4 Explanation

Evaluation of DX 2 (continued)

045BH | xxyyH | Block for send mail box 7 job mail box illegal

xx = ID /yy = DB number

045CH | xxO0H | Data ID for receive mail box illegal (not 44H, 58H, O0H)
xx = data ID

045DH | xxyyH | Block for receive mail box illegal

xx = ID /yy = DB number

045EH | xxO0H | Data ID for coordination byte illegal (not 44H, 58H, 4DH)
xx = 1D

045FH | xxyyH | Block for coordination byte illegal

xx = ID /yy = DB number

0460H | xxyyH | Block for coordination byte does not exist

xx = ID /yy = DB number

0461H | yyyyH | Data word for coordination byte does not exist

yyyy = number of non-existent DW

CPU 928B Programming Guide
C79000-A8576-C898-01 12-9

Appendix 2: Error Identifiers

Error IDs in ACCU 1

and ACCU 2
ACCU- | ACCU- OB
1-L 2-L Explanation called
REG-FE (closed loop controller error)
0801H | DByyH | Sampling time error OB 34
yy = number of the affected controller data block
0802H | DByyH | Controller data block not loaded
yy = number of the data block not loaded
0803H | FByyH | Controller function block not loaded
yy = number of the function block not loaded
0804H | FByyH | Controller function block not regcognized
yy = number of the function block not recognized
0805H | FByyH | Controller function block loaded with wrong PG software
yy = function block number
0806H | DByyH | Wrong controller data block length
yy = data block number
0880H | 00yyH | Timeout (QVZ) during controller processing
yy = number of the 1/O byte that caused the QVZ
WECK-FE (collision of timed interrupts)
1001H | 0016H | Callision of timed interrupts - OB 10 (10 ms) OB 33
0014H | Coallision of timed interrupts - OB 11 (20 ms)
0012H | Collision of timed interrupts - OB 12 (50 ms)
0010H | Coallision of timed interrupts - OB 13 (100 ms)
000EH | Collision of timed interrupts - OB 14 (200 ms)
000CH | Collision of timed interrupts - OB 15 (500 ms)
000AH | Coallision of timed interrupts - OB 16 (1sec)
0008H | Coallision of timed interrupts - OB 17 (2sec)
0006H | Coallision of timed interrupts - OB 18 (5sec)
BCF (operation code error)/substitution error
1801H - Substitution error with the DO RS operation OB 27
1802H - Substitution error with the DO DW, DO FW operations
1803H - Substitution error with the DO= , DI= operations
1804H - Substitution error with the L= , = T operations
1805H - Substitution error with the A=, AN=, O=, ON=,
S=und RB= operations
1806H - Substitution error with the RD=, LD=, FR=, SFD=,
SR=, SP=, SSU= and SEC= operations
CPU 928B Programming Guide
12-10 C79000-A8576-C898-01

Appendix 2: Error Identifiers

ACCU- | ACCU- OB
1-L 2-L Explanation called

BCF (operation code error)

1811H - Operation with illegal opcode OB 29
1812H - Illegal opcode for an operation in which the high byte
of the first operation word contains the value 68H
1813H - Illegal opcode for an operation in which the high byte
of the first operation word contains the value 78H
1814H - Illegal opcode for an operation in which the high byte
of the first operation word contains the value 70H
1815H - Illegal opcode for an operation in which the high byte

of the first operation word contains the value 60H

BCF (operation code error)/parameter error

lllegal parameter with the following: OB 30
1821H - CcDbBO,1,2
182BH - JU(C) OB 0
182CH - JU(C) OB >39: speial function does not exist
182DH - CX DX 0,CXDX1and CXDX?2
182EH - LFW/TFW/LPW/TPW/LOW/TOW/LDD/TDD/DO FW: 255
182FH - L IW/T IWL QW/T QW 127
1830H - L FD/TFD 253, 254, 255
1831H - L ID/T ID/L QD/T QD 125, 126, 127
1832H - RLD/RRD/SSD/SLD 33-255
1833H - SLW/SRWI/LIR/TIR 16-255
1834H - SED/SEE 32-255
1835H - A=/AN=/0=/ON=/S=/RB=/==/RD=/FR=/SP=/SR=/
SEC=/SSU=/SFD=/L=/LD=LW=/T= 0,27-255
1836H - DO=/LDW= 0, 126-255
1837H - A S/O S/S S/= S/IAN S/ON S/R S byte number > 1023
1838H - A S/O SIS S/= S/IAN S/ON S/R S bit number > 7
1839H - L SY/T SY parameter > 1023
183AH - L SW/T SW parameter > 1022
183BH - L SD/T SD parameter >1020
183CH - G DB/GX DX Parameter 0, 1 or 2 (DB or DX 0, 1, 2 cannot

be generated)

LZF (runtime errors)/block not loaded

1A01H - Block not loaded for C DB operation OB 19
1A02H - Block not loaded for CX DXoperation
1A03H - Block not loaded for JU(C) FB, OB 1 to OB 39,
PB, SB operation
1A04H - Block not loaded for DOU/DOC FX operation
1A05H - Block not loaded for OB 254 or 255 operation
1A06H - Block not loaded for OB 182 operation
1A07H - Block not loaded for OB 150/0OB 151 operation

CPU 928B Programming Guide
C79000-A8576-C898-01 12-11

Appendix 2: Error Identifiers

ACCU- | ACCU- OB
1-L 2-L Explanation called

LZF (runtime rror)/load or transfer error

1A11H - Access to a non-defined data word with A/AN D, O/ON D, S/R D, OB 32
=D

1A12H - Transfer error with TDR to a non-defined data word

1A13H - Transfer error with TDL to a non-defined data word

1A14H - Trans error with TDW to a non-defined data word

1A15H - Transfer error with TDD to a non-defined data word

1A16H - Load error with LDR to a non-defined data word

1A17H - Load error with LDL to a non-defined data word

1A18H - Load error with LDW to a non-defined data word

1A19H - Load error with LDD to a non-defined data word

LZF (runtime error)/o ther runtime errors

Error indicated for .../by ... :

1A21H - G DB, GX DX: data block already exists OB 31
1A22H - G DB, GX DX: illegal number of data words
(<1 or>4091)
1A23H - G DB, GXDX: not enough space in the RAM
1A25H - Dl illegal parameter in ACCU 1 (< 1 or > 125)
1A29H - Bracket stack under of overflow after 'A(’, 'O(, ')’
1A2AH - C DB, CXDX: block length in data block header too short
(length <5 words)
1A2BH - Function block loaded with wrong PG software
1A2CH - ACR: illegal page number in ACCU-1-L (> 255)
1A31H - OB 254 or OB 255 (shift) or OB 250:
destination data block already exists in DB RAM
1A32H - OB 254 or OB 255 (duplicate):
destination data block already exists in DB RAM
1A33H - OB 254 or OB 255 or OB250:

not enough space in the DB RAM

1A34H | 0001H | OB 182: data field written to illegally

1A34H | 0100H | OB 182: address area type illegal

1A34H | 0101H | OB 182: data block number illegal

1A34H | 0102H | OB 182: "number of the first parameteomd” illegal

1A34H | 0200H | OB 182: "source data block type" illegal

1A34H | 0201H | OB 182: "source data block number" illegal

1A34H | 0202H | OB 182: "number of the first data word in the source

to be transferred" illegal

1A34H | 0203H | OB 182: avalue < 5words is entered in the block header
as the length of the source data block

1A34H | 0210H | OB 182: “destination data block type" illegal

1A34H | 0211H | OB 182: *“destination data block number" illegal

1A34H | 0212H | OB 182: "number of the first destination data word

to be transferred" illegal

1A34H | 0213H | OB 182: avalue < 5words is entered in the block header
as the length of the destination data block

CPU 928B Programming Guide
12-12 C79000-A8576-C898-01

Appendix 2: Error Identifiers

ACCU- | ACCU- OB
1-L 2-L Explanation called

LZF (runtime error)/o ther runtime errors (continued)

Error indicated for .../by ... :
1A34H | 0220H | OB 182: "number of data words to be transferred"” illegal OB 31
(=0 or > 4091)

1A34H | 0221H | OB 182: source data block too short
1A34H | 0222H | OB 182: destination data block too short
1A34H | 0223H | OB 182: destination data block in EPROM

1A35H - OB 250: number of the transfer block illegal

1A36H - OB 250: different length in DB x and DB x+1 or DX x
and DX x+1

1A3AH - OB 221: illegal value for the new cycle time (cycle time
<1 msor> 13 000 ms)

1A3BH - OB 223: different start-up types for the CPUs involved in
multiprocessor operation

1A41H - OB 240, OB 241 or OB 242:

illegal shift register or data block number
(no. < 192 or > 255)

1A42H - OB 241: shift register not initialized
1A43H - OB 240: not enough space in the DB RAM
1A44H - OB 240: Data word DW 0 dof the data block does not
1A45H - contain the value '0’
OB 240: illegal shift register length in DW 1
1A46H - (not between 2 and 256)
1A47H - OB 240: illegal pointer position or number of pointers > 5
1A48H - OB 120: illegal value in ACCU 1 or ACCU-2-L
1A49H - OB 122: illegal value in ACCU 1
1A4AH - OB 110: illegal value in ACCU 1 or ACCU-2-L
1A4BH OB 121: illegal value in ACCU 1 or ACCU-2-L

1A4CH | 0001H | OB 123: illegal value in ACCU 1

1A4CH | 0100H | OB 150: function number illegal (= 0 or > 2)
1A4CH | 0101H | OB 150: address area type illegal

1A4CH | 0102H | OB 150: dta block number illegal

1A4CH | 0103H | OB 150: "number of the firstada field word" illegal
OB 150: avalue < 5words is entered in the block header
1A4CH | 0201H as the length of the data block

1A4CH | 0202H | OB 150: year specified in data fieltepal

1A4CH | 0203H | OB 150: month specified in data field illegal
1A4CH | 0204H | OB 150: day of month specified in data field illegal
1A4CH | 0205H | OB 150: weekday specified in datald illegal

1A4CH | 0206H | OB 150: hour specified in datee illegal

1A4CH | 0207H | OB 150: minute specified in data field illegal

1A4CH | 0208H | OB 150: second specified in data field illegal
1A4CH | 0209H | OB 150: "1/100 second" specified in data field not
1A4CH | 020AH equalto O

1A4DH | 0001H | OB 150: data field word 3 /bits 0 to 3 not equalto 0
1A4DH | 0100H | OB 150: hour format does not match setting in OB 151
1A4DH | 0101H | OB 151: function number illegal (= 0 or > 2)

OB 151: address area type illegal

OB 151: data block number illegal

CPU 928B Programming Guide
C79000-A8576-C898-01 12 -13

Appendix 2: Error Identifiers

ACCU- | ACCU- OB
1-L 2-L Explanation called

LZF (runtime error)/other runtime errors (continued)

Error indicated for .../by ... :
1A4DH | 0102H | OB 151: "number of the firstata field word" illegal OB 31
1A4DH | 0103H | OB 151: avalue < 5words is entered in the block header

as the length of the data block

1A4DH | 0201H | OB 151: year specified in the data fielldgal

1A4DH | 0202H | OB 151: month specified in the data field illegal

1A4DH | 0203H | OB 151: day of month specified in the data field illegal

1A4DH | 0204H | OB 151: weekday specified in the daid illegal

1A4DH | 0205H | OB 151: hour specified in the datel®l illegal

1A4DH | 0206H | OB 151: minute specified in the data field illegal

1A4DH | 0207H | OB 151: secondspecified in the data field illegal

1A4DH | 0208H | OB 151: "1/100 second" specified in data field is not equal to O
1A4DH | 0209H | OB 151: job type in data field illegal (> 7)

1A4DH | 020AH | OB 151: hour format does not match setting in OB 150

1A4EH | 0001H | OB 152: function number illegal (not 0 to 3 or
8 to 15)

1A4FH | 0001H | OB 153: function number illegal (=0 or <0)
1A4FH | 0002H | OB 153: delaytime illegal

1A50H - LRW, TRW: thecalculated memory address < BR + constant>
is not in the range "0 .. EDFFH" (see Chap 9)
1A51H - LRD, TRD: the calculated memory address < BR + constant>
is not in the range "0 .. EDFEH" (see Chap. 9)
1A52H - TSG, LY GB,LW GW, TY GB, TW GW:

the calculated linear address < BR + constant>
is not in the range "0 .. EFFFH"

1A53H - LY GW, LW GD, TY GW, TW GD:

the calculated linear address < BR + constant>
is not in the range "0 .. EFFEH"

1A54H - LY GD, TY GD:

the calculated linear address < BR + constant>
is not in the range "0 .. EFFCH"

1A55H - TSC,LY CB, LW CD, TY CW, TW CD:

the calculated page address < BR + constant>
is not in the range "FA400HEBFFH"

1A56H - LY CW,LWCD, TY CW, TW CD:

the calculated page address < BR + constant>
is not in the range "F400H .. FFFEH"

1A57H - LY CD, TY CD:

the calculated page address < BR + constant>
is not in the range "F400H .BFCH"

CPU 928B Programming Guide
12 -14 C79000-A8576-C898-01

Appendix 2: Error Identifiers

ACCU- | ACCU- OB
1-L 2-L Explanation called
LZF (runtime error)/o ther runtime errors (continued)
Error indicated for .../by ... :
1A58H - TNWI/TNB: the source block is not completely in one of OB 31
the following areas:
0000 .. 7TFFF user memory (see Chapter 9)
8000 .. DD7F data blockRAM
DD80.. E3FF DB 0
E400 .. ETFF Sflags
E800 .. EDFF system data (RI, RJ, RS, RT, C, T,
EEOQO .. EFFF #gs, process image
FO00 . FFFF peripherals
1A59H - TNW/TNB: the destination block is not completely in one of
the following areas:
0000 .. 7TFFF user memory (see Chapter 9)
8000 .. DD7F data block RAM
DD80.. E3FF DB 0
E400 .. E7FF S flags
E800 .. EDFF system data (RI,RJ, RS, RT,C, T)
EEOQO .. EFFF flags, process image
FOQO .. FFFF peripherals

QVZ (timeout)

1E23H | yyyyH | Timeout(QVZ) in the user program when accessing the OB 23
peripherals
yyyy = QVZ address

1E25H | yyyyH | Timeout outputting the process image of the digital OB 24
outputs

yyyy = address of the non-acknowledged output byte
1E26H | yyyyH | Timeout updating the process image of the digital

inputs

yyyy = address of the non-acknowledged input byte
1E27H | yyyyH | Timeout updating the IPC input flags

yyyy = address of the non-acknowledged IPC flag byte
1E28H | yyyyH | Timeout updating the IPC output flags

yyyy = address of the non-acknowledged IPC flag byte

ADF (adressing error)

1E40H | yyyyH | Adressingerror (ADF) in the user program OB 25
yyyy = ADF address

CPU 928B Programming Guide
C79000-A8576-C898-01 12 - 15

Appendix 3: STEP 5 Operations not Contained in the CPU 928B

Appendix 3: STEP 5 Opera tions not Contained in the CPU 928B

Please note that the following STEP 5 operations belonging to the
CPU 946/947 and CPU 948nnot be processed in the CPU 928B.

Operation Function
BAS Block command output
BAF Release command output

B 1,Q,F C,T,D,RI, RJ, |Testbitfor signal status '1’

RS, RT
TBN 1,Q,F,C, T,D,RI, RJ, | Testbitfor signal stauts '0’
RS, RT
SU 1,Q,F C, T,D,RI, RJ, |Set bitunconditionally
RS, RT
RU |I,Q,F C,T,D,RI,RJ, |Resetbitunconditionally
RS, RT
LIM Load interrupt mask
SIM Set interrupt mask
UBE Interrupt block end
STW Stop operation in time-driven
interrupt processing
IAE Disable addressing errpr
interrupt
RAE Enable addressing error
interrupt
RAI enable requested interrupt
processing
1Al Disable requested interrupt
processing

CPU 928B Programming Guide
12 - 16 C79000-A8576-C898-01

Appendix 4: Identifiers for the Program Processing Levels

Appendix 4: Identifiers for the Program Processing Levels

The identfiers correspond to the identifiers entered in the ISTACK
underLEVEL (hexadecimal).

Identifier Level

0002H Cold restart

0004H Cycle

0006H Time-driven interrupt 5 sec
0008H Time-driven interrupt 2 sec
000AH Time-driven interrupt 1 sec
000CH Time-driven interrupt 500 ms
000OEH Time-driven interrupt 200 ms

0010H Time-driven interrupt 100 ms
0012H Time-driven interrupt 50 ms
0014H Time-driven interrupt 20 ms
0016H Time-driven interrupt 10 ms
0018H Timed job

001AH Not used

001CH Closed loop control

001EH Not used

0020H Delay interrupt
0022H Not used
0024H Process interrupt

0026H Not used

0028H Retentive manual cold restart
002AH Retentive automatic cold restart
002CH Abort

002EH Interface error

0030H Collision of timed interrupts
0032H Closed loop controller error
0034H Cycle error

0036H Not used

0038H Operation code error
003AH Runtime error

003CH Addressing error

003EH Timeout

0040H Not used

0042H Not used

0044H Manual warm restart
0046H Automatic warm restart

CPU 928B Programming Guide
C79000-A8576-C898-01 12 - 17

Appendix 5: Example "ISTACK Evaluation”

Appendix 5: Example "ISTACK Evaluation"

Ready to start?

Error analysis

12 -18

This (simplified) example illustrates how to evaluate the ISTACK.

For more detailed information, you should also refer to Section 5.3
"Control Bits and the Interrupt Stack".

The CPU has interrupted cyclic program processing and has changed
to the stop mode.

To find the cause of the interruption, select the programmer online
function "output ISACK".

The control bits then appear on the PG screen as shown below:

CONTROL BITS

>>STP<<
X
>>ANL<<

>>RUN<<

32KWRAM
URGELOE
DX0-FE
NAU

BCF

N

STP-6 FE-STP BARBEND PG-STP STP-SCH STP-BEF MP-STP
X
ANL-6 NEUSTA MW A AWA ANL-2 NEUZU MWA-ZUL
X X X
RUN-6 EINPROZ BARB OB1GEL FBOGEL OBPROZA OBWECKA
X X

16KWRAM 8KWRAM EPROM KM-AUS KM-EIN DIG-EIN DIG-AUS

X X X
URL-IA STP-VER ANL-ABB UA-PG UA-SYS UA-PRFE UA-SCH
FE-22 MOF-FE RAM-FE DBO-FE DB1-FE DB2-FE KOR-FE
PEU BAU STUE-FE ZYK QVvz ADF WECK-FE
FE-6 FE-5 FE-4 FE-3 LZF REG-FE DOPP-FE

X /

The "X"s in the control bits indicate the current operating status of the CPU
(>>STP<<), and certain characteristics of the CPU are marked (OB 1
loaded, single processor mode, 16 KW user memory etc.). In the top
line the cause of the stoppage is indicate8®B-BEF. It is assumed

that you have not programmed an STP operation in your STEP 5 user
program. This means that the stoppage was caused by a stop operation
from the system program because an error OB was not loaded. The
identifierLZF is marked in the bottom line.

CPU 928B Programming Guide
C79000-A8576-C898-01

Appendix 5: Example "ISTACK Evaluation”

It is possible that the system program has detected a runtime error and
that the corresponding error organization block is not programmed. Since
there are various runtime errors, and you cannot posibly which of

them has occurred, the information shown in the control bitst iget
sufficient for reliable diagnosis.

You can now display the actual ISTACK:

INTERRUPT STACK

DEPTH: 01
OP REG: 0000 SAC: 0000 DB-ADD: 0000 BA-ADD: 0000
BST-STP: 0001 SAC-NO.: 226 DB-NO.: -NO.:

REL-SAC: 0006 DBL-REG.: 0000
LEVEL: 003A UAMK: 0120 ICRW: 0000
ACCUL: 0000 0AO1 ACCU2: 0000 0000 ACCU3: 0000 0000 ACCU4: 0000 0000
CONDITION CODE: CC1 CCo OVFL OVFLS OR ERAB

STATUS RLO
CAUSE OF INTERR.: NAU PEU BAU MPSTP ZYK Qvz

ADF STP BCF S-6 LZF REG-FE

X
STUEB STUEU WECK DOPP

o /

The ISTACK atdepth 01represents the program processing level that
was last active before the transition to the stop mode. From the identifier
003A (after LEVEL) you can see that this is the ISTACK of the
program processing levRlUNTIME ERROR . The error identifier
00001A01is entered iIMCCU 1. This tells you that the runtime error
was caused by calling a data block that was not loaded using the
operation "C DB". Since the corresponding error, OB 19, does not
exist in our user program, the system program aborted program
execution (STP). The interrupt display mask watK also
contains the cause of interrupt. The identifi¢20corresponds to the
bit pattern'0000 0001 0010 0000."Bit 2° (LZF) and Bit 2 (STP) are
You must now find out which block and which operation caused the

runtime error.

CPU 928B Programming Guide

C79000-A8576-C898-01 12 -19

Appendix 5: Example "ISTACK Evaluation”

You can now move on in the ISTACK de@pth 02

INTERRUPT STACK

DEPTH 02
OP REG: 2006 SAC: 0037 DB-ADD: 0000 BA-ADD: 0000
BST-STP: 0001 OB-NO.: 1 DB-NO.: -NO.:
REL-SAC: 0004 DBL-REG.: 0000
LEVEL: 0004 ICMK: 0020 ICRW: 0000

ACCUL: 0001 1001 ACCU2: 0000 0101 ACCU3: 0000 0000 ACCU4: 0000 0000

CONDITION CODE: ccl cco OVFL OVFLS OR ERAB
STATUS VKE

CAUSE OF INTERR:: NAU PEU BAU MPSTP ZYK Qvz
ADF STP BCF S-6 LZF REG-FE

K STUEB STUEU WECK DOPP /

The identifiero004 (after LEVEL) tells you that this is the ISTACK of

the interrupted program processing lev#ICLE . The STEP address
counter §AC) indicates the addre8937H. The operation that

caused the error is stored at this absolute address in the user memory.
Its code is specified @006 (OP-REG) From the listing of the

machine codes in the operations list, you can see that this is the STEP 5
operation

'ADB 6’.

The interrupt occurred in organization bla@B 1. Within OB 1, the
operation that caused the error is at the relative addleegs
(REL-SAC). As you have already established, this operation led to a
runtime error (see ICMK, bit’2and CAUSE OF INTERR.).

You can now display the incorrect operation on the screen using the
SEARCH online function. Enter the appropriate block (OB 1) and the
relative address of the operation.

CPU 928B Programming Guide
12 - 20 C79000-A8576-C898-01

Appendix 5: Example "ISTACK Evaluation”

! F1 ! F2 | F3 | F4 ! F5 ! F6 ! F7 ! F8 !
I DISP SYMB! ! ! ! ILIB.NO. ! ! !
OUTPUT DEVICE: PC BLOCK: OB1 SEARCH: 4H

REL-SAC

Following the search, you can see the operdtiod B 6" , that
caused the interruption; there is no data block with the number 6 in
the user memory.

OB1

SEGMENT 1 0000

0004 :CDB6 operation that caused the error
0005 :

0006

0007

0008 :BE

CPU 928B Programming Guide
C79000-A8576-C898-01 12 -21

Further Reading 13

CPU 928B Programming Guide
C79000-A8576-C898-01 13-1

Further Reading

Further Reading
11/

12/

13/

14/

15/

16/

17/

CPU 928B Programming Guide
C79000-A8576-C898-01

S5-135U/155U
CPU 922/CPU 928/CPU 928B/CPU 948
Pocket Guide

Order no. 6ES5 997-3UA22

S5-135U/55U System Manual

Order no. 6ES5 998-0SH21

STEP 5 Manual

Order no. C79000-G8576-C140

GRAPH 5: Graphic programming of
sequential controls under the
S5-DOS SIMATIC S5 operating system

Order no. 6ES5 998-1SA01

Standard Function Blocks
Data Handling Blocks CPU 922, CPU 928, CPU 928B
S5-135U, SB155U Programmable Controllers

SINEC
Manual
CP 143 with COM 143

Order no. 6GK1970-1AB43-0AB0

Hans Berger:
Automating with the SIMATIC S5-135U

SIEMENS AG

Order no. A19100-L531-F505-X-7600

13-3

Further Reading

13-4

18/

19/

110/

111/

112/

113/

114/

Programmable Controllers
Basic Concepts

SIEMENS AG
Order no. ES0850-C298-A2

Catalog ST 59: Programmers
SIMATIC S5

Catalog ST 54.1: Programmable Controllers
S5-135U, S5-155U and S5-155H

Catalog ST 57: Standard Function Blocks
and Driver Programs for
Programmable Controllers of the U Series
SIMATIC S5

SCL Manual

Order no. C79000-G8576-C162

R64 Controller Structure

S5-135U
Communication CPU 928B

Order No.: 6ES5 998-0CN21

CPU 928B Programming Guide
C79000-A8576-C898-01

Index and Lists 14

Contents of Chapter 14

List of Abbreviations 14 -3
INAEX . .o 14 -5
List of Tables and Figures i 14 -11
List of Tables 14 - 11
LiSt Of FIQUIES. . . . oo 14 - 17
CPU 928B Programming Guide
14 -1

C79000-T8576-C898-01

List of Abbreviations

List of Abbreviations

Abbreviations

(An explanation of the ISTACK abbreviations can derfd in Section 5.4)

ACCU-1 (2, 3, 4)-L
ACCU-1 (2, 3, 4)-H
ACCU-1 (2,3, 4)-LL
ACCU-1 (2, 3, 4)-LH
ADF

ANZW

BASP
BCD

BR
BSTACK

CC1CCo
COR

CP

CPU

CSF

DB
DBA
DBL
DX

EPROM
ERAB
EU

FB
FX

IM

INT

P
ISTACK

CPU 928B Programming Guide

C79000-T8576-C898-01

low word in accumulator 1 (2, 3, 4), 16 bit

high word in accumulator 1 (2, 3, 4), 16 bit

low byte of low word in accumulator 1 (2, 3, 4), 8 bit
high byte of low word in accumulator 1 (2, 3, 4), 8 bit
addressing error
condition code word

disable command output (signal on S5 bus)
binary coded decimal

base address register

block stack

condition code bits for digital operations
coordinator module

communications processor

central processing unit

control system flowchart

data block

data block start address (in register 6)
data block length (in register 8)
extended data block

erasable programmable read only memory
first scan (bit code)
expansion unit

function block
extended function block

interface module
(system)interrupt

intelligent peripheral module
interrupt stack

14 -3

List of Abbreviations

KB
KDB

LAD
LED

NAU

OB
OR
0Ss
ov

PAFE
PARE
PB
PEU
PG

P

PII
PIQ
PLC

QVz

RAM
RLO

SAC
SB
SPU
STA
STL
STS
SUF
STUEB
STUEU

TRAF

ZYK

14 -4

call for a non-existent logic block
opening a non-existent DB/DX data block

ladder diagram
light-emitting diode

power failure

organization block

or (bit code)

overflow latching (word code)
overflow (word code)

parameter assignment error byte
parity error

program block

power failure on expansion unit
programmer

process image

process image of the inputs
process image of the outputs
programmable controller

timeout

random-access memory
result of logic operation

step address counter
sequence block

operating system processor
status (bit code)

statement list

stop statement

substitution error

BSTACK overflow

ISTACK overflow

transfer or load error

cycle error

CPU 928B Programming Guide
C79000-T8576-C898-01

Index

Index
A
Accumulators (ACCUSs) 3-15, 6-15
Actual operands
of function blocks 2-31

Addressing 1-16
ADF (addressing error) 5-29, 5:53
Arithmetic operations 3-56
Assignment list 247, 2-26
AUTOMATIC COLD RESTART

See COLD RESTART
AUTOMATIC WARM RESTART

See WARM RESTART
B
Basic levels 4-8, 4-10
Basic operations 244, 3-19
BASP LED 4-6
BASP signal 4-27
BCF (operation code error)

operation code error 5-29, 5439, 5-41

5-29, 5-39, 542
5-29, 5-39 - 5-40

parameter error
substitution error

Binary numbers 2-8
Block
address list 3-3.8-12
block ID 2-38
body 2-14, 2-265, 2-38
calls 2-17, 3-8, 3-32
formal operands (block parameter®-2<
header 2-14, 2-3
number 2-13, 2-38, 3-33
preheader 2-15, 2-37
Block operations 3-32
Blocks
nesting blocks 348
BR register 9-26
BSTACK (block stack)
evaluate 5-9
output 5-8
read 6-53
Cc
CClandCCO

See results codes

CPU 928B Programming Guide
C79000-T8576-C898-01

Clock-driven time interrupts

interruptions 4-34

special features 4-34
Closed loop controller structure R64 4-38
Closed-loop control 6-110 - 6-124
Communication OBs 10-20

condition code byte 10-23

parameters 10-21

runtimes 10-29
Communication processors (CPs) 10-7
Comparison operations 3-32
COMPRESS MEMORY 2-16
Control bits 5-5, 5-10 - 5-28
Controller

processing closed loop

controller interrupts 4-3&
CONTROLLER
INTERRUPT 4-g, 4-10), 4-28, 4-38

interrupt points 4-39
Conversion operations 3-62
Correcting blocks 2-16
Counter value 3-28
Counters C 1-15
CSF (control system flowchart) 2-4
Current data block 1-16
CYCLE 3-11, 4-28

cyclic processing 34, 3:11

interrupt points 4-3

user interface OB 1 4-29
Cycle boundary 6-40
Cycle statistics 6-42
Cycle time 6-40
Cycle statistics 6-40
Cyclic processing 1-6, 1-18, 4-28
D
Data area 6-68
Data block DB 0 2-43, 3-8
Data block DB 1 2-43
Data block DB 2 2-43
Data block DB1

create 10-9
Data block DX 0 2-43
Data block DX 1 2-43

Data block RAM (DB RAM)| 1-12, 3-10, 6-101

Data blocks
general 1-15%
Data blocks (DB/DX) 14
accessing data blocks 6458 - 6-61
general 204 2-37
generating 3-33
programming 2-39
14 -5

Index

structure 2-37
validity 2-400 H
Data word 1-15, 2-37, 2-41
DBA (data block start address) 9:11 Handling blocks 6-100
DBL (data block length) 9-14
Decimal numbers 2:8
Decrementing 3-65 |
Default
system reaction 1.9 1I/Os
Defaults, modifying 1-9 address distribution 8-7
Definition of the "9th track" 4-22 modules 1-13
DELAY INTERRUPT O area 1-13
interruptions 4-32 P area 1-13
special features 4-32 ICMK 8-21
Delay time 4-28 ICRW 8-19
Delayed interrupt 6-48 Incrementing 3-65
Display generation operation 3-33 Interface
second serial interface 5-36
to system program 1.9, 1-12, 2-19
E Interprocessor communication flags
data exchange via IPCs 10-5
EPROM submodule 3-10 general 3-13,10-5
ERAB jumper settings 10-5
See results codes Interrupt condition codeword 3-18
Error handling Interrupt events 3-14
using organization blocks 5-29 - 5-31 Interrupt-driven processing 1-7
Error IDs -7 IPCflags
Error information 5-5/- 5-9 transferring blocks of IPC flags 6-94
Error levels 4-8, 4-10 ISTACK (interrupt stack)
Error OBs 2-21 code bits 5-19
Executive operations 3-58 - 3-70 contents 5-18
error information 5-5/-5-9
information in ISTACK 5-19
F output 5-6/, 5-10
F flags 1-14, 10-21
Fixed point numbers 29 J
Floating point numbers 2-8
Formal operands 27/ 3-51 Jump operations 3-58
Function block FB 0 2-36
Function blocks (FB/FX)
general 24 2-25 L
programming 2-27
standard function blocks 2-25, 235 LAD (ladder diagram) 2-4
structure 2-26 LED RUN 4-5
LED STOP 4-5
Library number 2-38
G Load operations 3-21, 3454
Local memory
Global memory access 9-28
access 9-29 general 9-4
general 9-4 Logic operations 3-50
GRAPH 5 -5 binary 3-19

CPU 928B Programming Guide
14 -6 C79000-T8576-C898-01

Index

digital
LZF (runtime errors)

M

Mantissa

See floating point number
MANUAL WARM RESTART

See WARM RESTART
Memory access

general

via the BR register
Memory organization
Mode of operation of a CPU
Multiprocessor communication

application examples

assignment list

buffering data

data amount

initializing

modes

receive data

send data

sequence
Multiprocessor mode

data exchange between CPUs

and CPs
Multiprocessor operation

communications mechanisms

I/O assignment
restart types

N

Nesting

program processing levels
Nesting depth
No operation

Normalized fixed point numbers

o

O area

See 1/0s
Operand areas
Operand substitution
Operating modes
Operation code
OR

See results codes

CPU 928B Programming Guide
C79000-T8576-C898-01

3-50
%3, 5-45

Organization block (OB)
general

Organization blocks (OB)
as user interfaces

Organization blocks (OBs)

control of the start-up procedure

error OBs
general
special functions OBs
OS (overflow latching)
See results codes
9-4 OV (overflow)

9-26 See results codes
9:4
1-6-1-7-6
P
0151
10-35 Parea
0-15 See 1/0Os
10-13 Page area/page memory
10-31 busy location
10-33 Pages
10-45 accessing pages
10-38 Parallel operation of serial
@-13 PG interfaces
cyclic functions
long-running functions
10-7 short-running functions

Parameter
10-4 Parameters for DX 0
109 PG functions
6-93 PG interface module
PG screen form
for generating DB1
PID controller
Priority
Process image
4-9 outputs (PIQ)
349 inputs (PII)
3-33 general
6-120, 6-124 updating
Process interrupt
Process interrupt signals
level-triggered
Process interrupts
disabling
edge-triggered
enabling
3-67 interrupts
4:4,11-6 multiple interrupts
26 processing
Processing operations
Program
program organization

1-13

2-17
2-19

2-21
2-21.
2-13
2-23

9-9, 9-33
9-34

9:33

11-20-11-28
11-25
11-22, 11-25
11-22, 1124
216

19,7-4,7-8-7-12

11-4
11-20

10-10
6-110
1-7,4-10

1-6, 1-13
1-6, 1-13
113 3-13
4-27
4:8, 10, 4-28

4-40

3-71, 4-42
4-41
3-7IL, 4-42
4-40
4-40
4-39
3-65

3-5-3-9

14 -7

Index

system program

user program
Program blocks (PB)
Program processing levels

general

level number
Programming

general
programming language

GRAPH 5

SCL

STEP 5
Programming language SCL
Programming tools

Q

QVZ (timeout error)

R

RAM submodule
REG-FE (controller error)
Response time
RESTART
errors during restart
errors in restart

restart types
Results codes
ERAB
CClandCCO
OR
(O]
ov
RLO
STA
RLO
See results codes
RS/RT area
RUN
errors in RUN
general
S
Sflags
Scratchpad flags
Semaphores

Sequence blocks
Sequence blocks (SB)
Serial link PG - PLC

14 -8

1.8, 6-95 - 6-97
1-10
23| 2-17

616, 6-22
6-93

1-17

1-20
1-20

1-20
1-20
1-20

5-29, 5-83

3-10
5-30, 5-58
4-44

5-32
5-3& - 5-62
6-93

3-1€, 3-20
3-13, 3-60
3-17
3-17
3-17
2-7,/3-17%, 3-20
3-17, 3-20

8-15

5-33/- 5-62
4-4,/4-27 - 4-44

1-14
51
3-71-3-78
2-172-24
2-13
1-19

Set/reset operations 3-20, 3-51
Shift operations 3-60
Shift register 6-101

Special functions
errors during special function

processing 6-9

general 6-5

interfaces 6-8
Special functions OBs 6-6

STA (status)

See results codes
Standard function blocks

See also function blocks

START-UP 3-11
general 3-11
STEP 5 operations 3-15
STEP 5 programming language 2:4 - 2-16
STL (statement list) 24
STOP 4-4
Stop operations 3-33
Structure of the memory area £-4,18-6
Structured programming 2-5
Suitability of the CPU 928B 1-4
Supplementary operations 2-4
System checkpoint 115
System data 8-15
System data words
bit assignment 8-18
System data words RS 3 and RS 4 5-6, 5-33
System operations 2+4, 3-58
System program 1-8
System program defaults 1-9
System RAM 8-6
System time 6-28
T
TIME INTERRUPT 4-8, 4-10, 4-28
Time interrupts
at fixed intervals 4-28
clock-controlled 4-27
interrupt points 4-36
interruptions 4-36
Time-controlled processing 1-7
Time-driven program execution
clock-controlled (time interrupt) 4-27
clock-driven time interrupt 4-31
delay interrupt 4-31
in fixed time bases (time
interrupts) 4-28, 4-35
time interrupts 4-31
Timed job, generate 6-33
Timer and counter operations 3-26, 3-52

CPU 928B Programming Guide
C79000-T8576-C898-01

Index

Timer value 3-27
Timers T 1-15
Transfer operations 3-21, 3:54
Transferring fields of memory 9-13 - 925
U
User checkpoints 115
User interface
for clock-driven time interrupt 4-34
for closed loop controller interrupt 4-38
for cyclic program execution 4-29
for delay interrupt 4-3
for process interrupt 4-39
for restart 4-22
for time interrupts 4-35
User memory 1-12
organization 8-9-8-14
User program 1-8,1-10
processing 34, 3-11
See program
storing 1-12
tasks 1-10
W

WECK-FE (collision of

time interrupts) 4-34, 4-35, 5-29, 5-57
VA
ZYK-FE (cycle time exceeded) 5-56

CPU 928B Programming Guide
C79000-T8576-C898-01 14 -9

List of Tables and Figures

List of Tables and Figures

List of Tables

Table 2-1 Overview of the organization blocks for program execution..................... 2-20
Table 2-2 Overview of the organization blocks for start-up. 2-21
Table 2-3 Overview of the organization blocks for error handling 2-21
Table 2-4 Overview of organization blocks for special functions 2-23
Table 2-5 Permitted formal operands for function blocks 2-29
Table 2-6 Permitted actual operands for function blocks. 2-31
Table 2-7 Data formats permitted ina datablock il] 2-39
Table 3-1 Result condition codes of STEP 5operations.l b, 3-18
Table 3-2 Binary logic operations.t b 3-19
Table 3-3 Set/reset Operations e e 3-20
Table 3-4 Load and transfer operations/part 1t 3-21
Table 3-5 Load and transfer operations/part 2 3-22
Table 3-6 Timer and counter OperationsS.ttt e e e e 3-26
Table 3-7 Arithmetic operations 3-31
Table 3-8 Comparison OPerationS.ttt e et e e 3-32

Table 3-9 Block operationso

Table 3-10 NOP/display/stop operations

Table 3-11 Binary logic operations with formaloperands. 3-50

Table 3-12 Digital logic Operations.t b 3-50

CPU 928B Programming Guide
C79000-T8576-C898-01 14 - 11

List of Tables and Figures

Table 3-13

Table 3-14

Table 3-15

Table 3-16

Table 3-17

Table 3-18

Table 3-19

Table 3-20

Table 3-21

Table 3-22

Table 3-23

Table 3-24

Table 3-25

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 5-1

Table 5-2

Table 5-3

Table 5-4

Table 5-5

Table 5-6

14 -12

Set/reset operations with formaloperands oo 3-51
Timer and counter operations with formaloperands 3-52
Load and transfer operations with formal operands. 3-54
Load and transfer operations with special operands [.... ... 3-55
Arithmetic operation ENT 3-56
Supplementagrithmeticoperations. i 3-57
JUMP OPEIALIONS . . .ot b 3-58
Shift Operations. o e 3-60
CoNVersion OPEeratioNSttt e e e e e b 3-62
Decrement/increment Operationt 3-65
Processing operationso e | 3-65
Diabling/enabling processinterrupts it 3-71
Digble/enable semaphore e 3-72
Meaning of the LEDs "RUN" and "STOP" b 4-5
Comparison of the different restarttypes. i 4-21
Assignment "Time interrupttime -called OB" i 4-35
Collision of time interruptidentifiers. 4 -37
Meaning of the control bits in the >>STP<<line.......................L. 5-12
Meaning of the control bits in the >>ANL<<line.......................1.....} 5-13
Meaning of the control bits in the >>RUN<<Iline.................... 5-14
Meaning of the control bitsinlines4and 5.l 5-14
Meaning of the control bitsinlines6to 8l 5-16
Meaning of the ISTACK IDs concerning the pointoferror 5-19

CPU 928B Programming Guide
C79000-T8576-C898-01

List of Tables and Figures

Table 5-7

Table 5-8

Table 5-9

Table 5-10

Table 5-11

Table 5-12

Table 5-13

Table 5-14

Table 5-15

Table 5-16

Table 5-17

Table 5-18

Table 5-19

Table 5-20

Table 5-21

Table 5-22

Table 5-23

Table 5-24

Table 5-25

Table 5-26

Table 5-27

Table 5-28

Table 5-29

Table 5-30

ISTACKIDs CAUSE OF INTERRUPT e 5-22

The organization blocks called in caseoferrorsL..... .. 5-29
Causes of error and causes of interrupt in RESTART o o)., 5-32
IDSTOr DB O €ITOIS . . . o ot ittt e e e e e e 5-33
IDSTOr DB L €ITOIS . . . o ottt et e e e e e e e b 5-34
IDSTOr DB 2 €ITOIS . . . o ot ittt e e e e e b 5-35
IDSTOr DX O BITOIS . oo ittt et e e e e e e e e e e e 5-36
IDSTOr DX 2 @ITOFS . . oottt et e e e e e e e e e 5-36

Causes of error and causes of interrupt in RESTARR@Ndwhich lead
AireCt 10 STOP. e 5-38

Causes of error and causes of interrupt in RESTARR@Ndwhich lead

direCtto STOP.o 5-39
BCF subSttUtion error e 5-40
BCF operation Code err0rottt e e e e e 5-41
BCF parameter €IT0r.ot e e e e e 5-42
LZF - calling a block thatisnotloaded i ... 5-44
LZF-loadfansfer error (TRAF)o ot e 5-45
LZF-other runtime errors/part 1.t 5-46
LZF-other runtime errors/part 2 (OB 182 identifier) 5-47
LZF-other runtime errors/part 3. 5-48
LZF-other runtime errors/part 4 (OB 150 identifiers) 5-49
LZF-other runtime errors/part 5 (identifiers of OB 151, OB 152 and OB 153) 5-50
LZF-other runtime errors/part 6 (identifiers of different system operations) 5-51

QVZ flags when calling OB 24

WECK-FE identifierst e e e 5-57

REG-FE identifiers e b 5-59

CPU 928B Programming Guide
C79000-T8576-C898-01 14 - 13

List of Tables and Figures

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table 6-5

Table 6-6

Table 6-7

Table 6-8

Table 6-9

Table 6-10

Table 6-11

Table 6-12

Table 7-1

Table 8-1

Table 8-2

Table 8-3

Table 8-4

Table 8-5

Table 8-6

Table 8-7

Table 8-8

Table 8-9

Table 8-10

14 -14

Overview of the special functions available with the CPU928B 6-6
OB 150 €rr0r IDS . . . ottt e e e e e 6-31
OB 151 rror IDS . . . ottt e e 6 -36
"Time job - Time parameter” assignments.l 6 - 37
Cycle statistics variables - OB 152. e 6-41
OB 153 fUNCLIONSt e e 6 -42
Results of the OB 152 functions.ot | 6-43
OB 153 rT0r IDS . . . ottt e e 6 -49
OB 182 error IDS . . . oo et e e 6-67
Transferring the data block for PIDcontrol 6-114
Controlword inthe transferDBt 6-117
Normalized fixed pointnumber 6-124
DX 0 parameters and theirmeaning. 7-8
Structure of thememory area.t 8-4
Assignment of RS 0 (Interrupt condition codeword). 8-18
Assignment of RS 1 (Interrupt condition code resetword)[....... 8-19
Assignment of RS 2 (Interrupt condition code groupword) 8-21
Assignment of RS 5 (STOP and RESTARTIDS) o) 8-23
Assignment of RS 6 (Cycle and submodule/MPL IDS).L. 8-24
Assignment of RS 7 (RESET IDs/Initialize error IDS) oo L) 8-25
Assignment of RS 8 (Error IDSHW/SW) oo 8-26
Assignment of RS 29 (Slot ID/CPU/PLC type) oo ot e e e 8-27
Assignment of RS 131 (Bide all interrupts) i 8-29

CPU 928B Programming Guide
C79000-T8576-C898-01

List of Tables and Figures

Table 8-11

Table 8-12

Table 8-13

Table 8-14

Table 8-15

Table 9-1

Table 9-2

Table 9-3

Table 9-4

Table 9-5

Table 9-6

Table 9-7

Table 9-8

Table 9-9

Table 9-10

Table 9-11

Table 10-1

Table 10-2

Table 10-3

Table 10-4

Table 10-5

Table 10-6

Assignment of RS 132 (Delay all interrupts). oo 8-29
Assignment of RS 133 (Processimage updating)cooovila). 8-30
Assignment of RS 135 (Bide individual time interrupts)|.... 8-31
Assignment of RS 137 (Delay individual time interrupts). 8-32
Assignment of RS 140 (Write/fread IDS)o 8-33
Operations for indirect memory access usingregisterst 9-8
16-bit register for LIR/TIRot e 9-9
Operationsforfieldtransfer i 9-18
Memory areas permitted for TNW, TXBand TXWoty 9-18
Load and arithmetic operations with the BR register. 9-26
Operations for transfer betweenregisters. il 9-27
Operations for accessing the localmemory oo 9-28
Operations for access to the global memory organizedinbytes 9-31
Operations for access to the global memory organized inwords 9-32
Operations for access to the pages organized inbytes.L... 9-35
Operations for access to the pages organized inwords 9-37
Condition codes of the communication OBsS i, 10-23
Code byte for the communication OBs/number groups.| 10-24
Condition code byte: Initialization conflictnumbers. 10-25

Condition code byte: Errornumbers

Condition code bytes: Warning numbers

Runtimes of the communication OBS. it e 10 - 29

CPU 928B Programming Guide
C79000-T8576-C898-01 14 - 15

List of Tables and Figures

Table 10-7

Table 10-8

Table 11-1

Table 11-2

Table 11-3

14 - 16

Assignment list for OB 200 (initialize) i 10-35

Link list for extending the IPCflagarea 10 - 66
Functions for installation and testing i 11-4
Activities at checkpoints. 11-18
Functions which cannot run simultaneously onbothPGs.|...... 11-23

CPU 928B Programming Guide
C79000-T8576-C898-01

List of Tables and Figures

List of Figures

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1-1

1-2

2-3

2-4

2-5

3-3

3-4

3-5

3-6

3-7

3-8

4-1

4-2

4-3:

4-4

4-5

4-6

Tasks of the system programt e e 1-8
Structure of a STEP 5 userprogram.t b b, 1-11
Methods of representation in the STEP 5 programming language 2-5
Example of block storage inthe usermemory. il . 2-16
Block calls that enable processing of a program block}. 2-18
Structure of a function block (FB/FX) oot 2-26

Range of validity of an opened data block. 2-42
Principle of cyclic program execution i 3-4

Example of the organization of the user program according
to the program StrUCLUreo e 3-6

Example of the organization of the user program according

to the structure of the controlled system. i 3-7
Nested logic block calls e 3-8
Example of block nestingdepth 3-9
Load and transfer operations in a byte-oriented memory area.[........ 3-23
Load and transfer operations in a word-oriented memory area. 3-24
Coordination of access to the globalmemory 3-73
Front panel of the CPU 928B with display and operating elements 4-4
Operating states and program processinglevels|........ 4-7
Principle of level change and ISTACK i b 4-9

Change of level as a result of a double call error

Double call of error level BCD. i

Cyclic program exXeCution.ottt i e 4-29

CPU 928B Programming Guide
C79000-T8576-C898-01 14 - 17

List of Tables and Figures

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

4-7

4-8

4-9

5-1

5-2

5-3

Fig 5-4

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

14 -

5-5

5-6

6-4

6-5

6-6

6-7

6-8

6-9

6-10

6-11

6-12

6-13

6-14

18

Process interrupt, leveltriggered 4-41
Process interrupt, edge-triggered e 4-41
Interrupt-driven program execution at block boundaries. 4-43
Example of the first screen form page "OUTPUT ISTACK": control bits. |... .. 5-11
Example of a screen page "OUTPUT ISTACK". il 5-18
Example 1 of evaluatingthe ISTACK e e 5-25
Example 2 of evaluating the ISTACK e e 5-26
Example 2 of evaluating the ISTACK: 1st ISTACK level 5-27
Example 2 of evaluating the ISTACK: 2nd ISTACK level. 5-28
Effects of the "roll up” function 6-15
Effects of the "rolldown" function. i 6-15
Storing BSTACK entriesinadatablock. 6 - 55
Contents of the BSTACK inthisexample o). 6 - 56
Contents of DX 10 in this example after OB 170iscalled|. 6-57
Shiftingthe DB startaddresst 6-61
Transferring in bytes (OB 190) and words (OB 192), 6 - 69
Transferring in bytes (OB 191) and words (OB 193)l 6-72
Saving the areas when the program processing levelchanges. 6-75
Swapping the high byte and low byte in a DB using OB 193/OB 190 6-76
Location of the page addressareaonthe S5busL........ 6-80

Location of the bytes when writing (OB 216) /

reading (OB 217) to/from a page in words or doublewords 6-81
ACCU contents before calling OB 216t el 6-83
ACCU contents before calling OB 217 i 6-85

CPU 928B Programming Guide
C79000-T8576-C898-01

List of Tables and Figures

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

6-15

6-16

6-17

6-18

6-19

6-20

7-1

7-2

7-3

8-5

8-6

8-7

ACCU contents before calling OB 218t i e 6 - 87

Schematic showing the principle of a shift register with 3 pointers and
12memory Cells o 6 -102

Schematic showing the principle of a shift register with 3 pointers and
12 memotry cells before thefirstclock pulse i, 6-103

Schematic showing the principle of a shift register with 3 pointers and

12 memotry cells after the firstclock pulse. i, 6-103
Structure of the data block for initializing a shiftregister 6 - 105
Block diagram of the PID controller i 6-110
Structure of DX 0 . .o ot b 7-6
PG screen form for assigning parameterstoDXO/part1................L.....}. 7-15
PG screen form for assigning parameterstoDXO/part2............... 7-16
Address distribution in the CPU 928B -overview.l 8-5
Address distribution - system RAM. e 8-6
Address distribution - peripherals (8 bits)onthe S5bus.|....... 8-7
Block addressesin DB 0.ttt 8-12
Example a): startaddress of DB50t 8-13
RS areamemorymap (Part 1).ottt b 8-16
RS areamemory map (Part 2).ot e 8-17
Global and localmemory e 9-5

Access to local or global memory areas using absolute addresses (see also Fig. 9-1) ...9-7
LIR/TIR with 16-bit memory areas (word-oriented) 1.

LIR/TIR with a-bit memory areas (byte-oriented). ol ...

Using the DBA register.o b

Using the DBL register.ot e e e 9-15

CPU 928B Programming Guide
C79000-T8576-C898-01 14 - 19

List of Tables and Figures

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

14 -

9-7

9-8

9-9

9-10

9-11

10-1

10-2

10-3

10-4

10-5

10-6

10-7

11-1

11-2

11-3

114

11-5

11-6

11-7

11-8

20

Occupation of the accumulators duringthe program.] 9-17
Transferring blocks of memory 9-20
Function block for transferring blocksofdata. 9-21
Loadingthe BR registerot e e 9-26
Register - register transfer operations. i e 9-28
Transferring IPC flags in the multiprocessormode.o ... 10-6
Example of IPC flag areasonthe CPs b 10-7
PG screen form forgenerating DB 1 10-10
Sender/receiver identification. 10-14
Example of the occupation of the COR buffer. 10-17
Overview of the blocks requiredineachCPU 10 - 69
Data exchange between 3 CPUS. i ek 10-75
Sequence of "program test” 11-14
Using the second interface as aPG interfaceL 11-20
First example of a configuration. 11-21
Second example of a configuration i 11-21
Handling simultaneous jobs 11-24
Typical sequence of a cyclic function and parallel short-running function. 11-25
Sequence of two parallel cyclic functions oo 11-27
Sequence when afunction blocksthe CPU928B} 11-28

CPU 928B Programming Guide
C79000-T8576-C898-01

Siemens AG

AUT E 1163

Ostliche Rheinbriickenstrale 50
D-76181 Karlsruhe

Federal Republic of Germany

From:

Your Name:

Your Title:

Company Name:
Street:
City, Zip Code:
Country:
Phone:

Please check any industry that applies to you:

[] Automotive

[] chemical

[] Electrical Machinery
[] Food

[] Instrument and Control

[] Nonelectrical Machinery

Other

I I 0 O

Pharmaceutical

Plastic

Pulp and Paper

Textiles

Transportation

Petrochemical

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it
to Siemens.

Please do not forget to state the title, order number and release of your manual.

THIE OF YOUI IMANUAL ...ttt ettt e e et e e e e e e e e et e e e eat e e e e sansessaaseaesteeesnnneees

Order NO. Of YOUI MANUAL: ...co.vuiiiie ettt e e e e eraa e e ees Release:

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Isthe text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics/tables:

Additional comments:

C79000-V8576-C067-01

	Title
	How to use this Manual
	1 Introduction
	1.1 Area of Application for the S5-135U with the CPU 928B
	1.2 Typical Mode of Operation of a CPU
	1.3 The Programs in a CPU
	1.4 Which Operands are available to the User Program?
	1.5 Accessing Operand Areas and Memory Areas
	1.6 How to Tackle Programming
	1.7 Programming Tools
	1.8 What is New with the CPU 928B (-3UB12)?

	2 User Program
	2.1 STEP 5 Programming Language
	2.1.1 The LAD, CSF, STL Methods of Representation
	2.1.2 Structured Programming
	2.1.3 STEP 5 Operations
	2.1.4 Number Representation
	2.1.5 STEP 5 Blocks and Storing them in Memory

	2.2 Program, Organization and Sequence Blocks
	2.2.1 Organization Blocks as User Interfaces
	2.2.2 Organization Blocks for Special Functions

	2.3 Function Blocks
	2.3.1 Structure of Function Blocks
	2.3.2 Programming Function Blocks
	2.3.3 Calling Function Blocks and Assigning Parameters to them
	2.3.4 Special Function Blocks

	2.4 Data Blocks
	2.4.1 Creating Data Blocks
	2.4.2 Opening Data Blocks
	2.4.3 Special Data Blocks

	3 Program Execution
	3.1 Principle of Program Execution
	3.2 Program Organization
	3.3 Storing Program and Data Blocks
	3.4 Processing the User Program
	3.4.1 Definition of Terms used in Program Execution

	3.5 STEP 5 Operations with Examples
	3.5.1 Basic Operations
	3.5.2 Programming Examples in the STL, LAD and CSF Methods of Representation
	3.5.3 Supplementary Operations
	3.5.4 Executive Operations
	3.5.5 Semaphore Operations

	4 Operating Modes and Program Processing Levels
	4.1 Introduction and Overview
	4.2 Program Processing Levels
	4.3 STOP Mode
	4.3.1 Characteristics and Indication of the Operating Mode
	4.3.2 Requesting an OVERALL RESET
	4.3.3 Performing an OVERALL RESET

	4.4 RESTART Mode
	4.4.1 MANUAL and AUTOMATIC GOLD RESTART
	4.4.2 MANUAL and AUTOMATIC WARM RESTART
	4.4.3 Comparison of the Different Restart Types
	4.4.4 User Interfaces for Restart
	4.4.5 Interruptions in the RESTART Mode

	4.5 RUN Mode
	4.5.1 Cyclic Program Execution
	4.5.2 Time-Driven Program Execution
	4.5.3 CLOSED LOOP CONTROLLER INTERRUPT: Processing Closed Loop Controllers
	4.5.4 PROCESS INTERRUPT: Interrupt-Driven Program Execution
	4.5.5 Nested Interrupt-Driven and Time-Driven Program Execution

	5 Interrupt and Error Handling
	5.1 Frequent Errors in the User Program
	5.2 Error Information
	5.3 Control Bits and Interrupt Stack
	5.3.1 Control Bits
	5.3.2 ISTACK Content
	5.3.3 Example of Error Diagnosis using the ISTACK

	5.4 Error Handling using Organization Blocks
	5.5 Errors during RESTART
	5.5.1 DB0-FE (DB 0 Errors) 5
	5.5.2 DB1-FE (DB 1 Errors)
	5.5.3 DB2-FE (DB 2 Errors)
	5.5.4 DX0-FE (DX 0 or DX 2 Errors)

	5.6 Errors in RUN and in RESTART
	5.6.1 BCF (Operation Code Errors)
	5.6.2 LZF (Runtime Errors)
	5.6.3 ADF (Addressing Error)
	5.6.4 QVZ (Timeout Error)
	5.6.5 ZYK (Cycle Time Exceeded Error)
	5.6.6 WECK-FE (Collision of Time Interrupts)
	5.6.7 REG-FE (Controller Error)
	5.6.8 ABBR (Abort)
	5.6.9 Communication Errors (FE-3)

	6 Integrated Special Functions
	6.1 Introduction
	6.2 OB 110: Accessing the Condition Code Byte
	6.3 OB 111: Clear ACCUs 1, 2, 3 and 4
	6.4 OB 112/113: Roll Up ACCU and Roll Down ACCU
	6.5 OB 120: Enabling/Disabling of Interrupts
	6.6 OB 121: Enable/Disable Individual Time-Driven Interrupts
	6.7 OB 122: Enable/Disable "Delay of All Interrupts"
	6.8 OB 123: Enable/Disable "Delay of Individual Time-Driven Interrupts"
	6.9 Setting/Reading the System Time (OB 150)
	6.10 OB 151: Setting/Reading the Time for Clock-Driven Interrupts
	6.11 OB 152: Cycle Statistics
	6.12 OB 153: Set/Read Time for Delayed Interrupt
	6.13 OB 160 to 163: Loop Counters
	6.14 OB 170: Read Block Stack (BSTACK)
	6.15 OB 180: Accessing Variable Data Blocks
	6.16 OB 181: Testing Data Blocks (DB/DX)
	6.17 OB 182: Copying a Data Area
	6.18 OB 190/OB 192: Transferring Flags to a Data Block
	6.19 OB 191/OB 193: Transferring Data Fields to a Flag Area
	6.20 OB 200 to OB 205: Multiprocessor Communication
	6.21 OB 216 to OB 218: Page Access
	6.21.1 OB 216: Writing to a Page
	6.21.2 OB 217: Reading from a Page
	6.21.3 OB 218: Reserving a Page
	6.21.4 Program Example

	6.22 OB 220: Sign Extension
	6.23 OB 221: Setting the Cycle Monitoring Time
	6.24 OB 222: Restarting the Cycle Monitoring Time
	6.25 OB 223: Comparing Restart Types
	6.26 OB 224: Transferring Blocks of Interprocessor Communications Flags
	6.27 OB 226: Reading a Word from the System Program
	6.28 OB 227: Reading the Checksum of the System Program
	6.29 OB 228: Reading Status Information of a Program Processing Level
	6.30 OB 230 to 237: Functions for Standard Function Blocks
	6.31 OB 240 to 242: Special Functions for Shift Registers
	6.31.1 Shift Registers
	6.31.2 OB 240: Initializing Shift Registers
	6.31.3 OB 241: Processing Shift Registers
	6.31.4 OB 242: Deleting a Shift Register

	6.32 OB 250/251: Closed-Loop Control/ PID Algorithm
	6.32.1 Functional Description of the PID Controller
	6.32.2 PID Algorithm
	6.32.3 OB 250: Initializing the PID Algorithm
	6.32.4 OB 251: Processing the PID Algorithm

	6.33 OB 254, OB 255: Transferring a Data Block to the DB RAM

	7 Extended Data Block DX 0
	7.1 Application
	7.2 Structure of DX 0
	7.2.1 Example of DX 0

	7.3 Parameters for DX 0
	7.4 Examples of Parameter Assignment
	7.4.1 STEP 5 Programming
	7.4.2 Assigning Parameters using the PG Screen Form

	8 Memory Assignment and Organization
	8.1 Structure of the Memory Area
	8.2 Address Distribution in the CPU 928B
	8.2.1 Address Distribution of the System RAM
	8.2.2 Address Distribution of the Peripherals

	8.3 User Memory Organization in the CPU 928B
	8.3.1 Block Headers in the User Memory
	8.3.2 Block Address Lists in Data Block DB 0
	8.3.3 RI / RJ Area
	8.3.4 RS / RT Area
	8.3.5 Bit Assignment of the System Data Words

	9 Memory Access using Absolute Addresses
	9.1 Introduction
	9.2 Access using the Address in ACCU 1
	9.2.1 LIR/TIR: Loading to or Transferring from a 16-Bit Memory Area Indirectly
	9.2.2 Examples of using the Registers

	9.3 Transferring Fields of Memory
	9.3.1 Example of Transferring Memory Fields

	9.4 Operations with the Base Address Register (BR Register)
	9.4.1 Operations for Transfer between Registers
	9.4.2 Accessing the Local Memory
	9.4.3 Accessing the Global Memory
	9.4.4 Accessing the Page Memory

	10 Multiprocessor Mode and Communication
	10.1 Multiprocessor Mode
	10.1.1 When to use the Multiprocessor Mode
	10.1.2 What Communications Mechanisms are Available ?
	10.1.3 Exchanging Data via IPC Flags
	10.1.4 I/O Flag Assignment and IPC Flag Assignment in Multiprocessor Mode (DB 1)
	10.1.5 How to Create Data Block DB 1

	10.2 Multiprocessor Communication
	10.2.1 Introduction
	10.2.2 How the Transmitter and Receiver are Identified
	10.2.3 Why Data is Buffered
	10.2.4 How the Buffer is Processed and Managed
	10.2.5 System Start-Up
	10.2.6 Calling Communication OBs
	10.2.7 How to Assign Parameters to Communication OBs
	10.2.8 How to Evaluate the Output Parameters

	10.3 Runtimes of the Communication OBs
	10.4 INITIALIZE Function (OB 200)
	10.4.1 Function
	10.4.2 Call Parameters
	10.4.3 Input Parameters
	10.4.4 Output Parameters

	10.5 SEND Function (OB 202)
	10.5.1 Function
	10.5.2 Call Parameters
	10.5.3 Input Parameters
	10.5.4 Output Parameters

	10.6 SEND TEST Function (OB 203)
	10.6.1 Function
	10.6.2 Call Parameters
	10.6.3 Input Parameters
	10.6.4 Output Parameters

	10.7 RECEIVE Function (OB 204)
	10.7.1 Function
	10.7.2 Call Parameters
	10.7.3 Input Parameters
	10.7.4 Output Parameters

	10.8 RECEIVE TEST Function (OB 205)
	10.8.1 Function
	10.8.2 Call Parameters
	10.8.3 Input Parameters
	10.8.4 Output Parameters

	10.9 Applications
	10.9.1 Calling the Special Function OB using Function Blocks
	10.9.2 Transferring Data Blocks
	10.9.3 Extending the IPC Flag Area

	11 PG Interfaces and Functions
	11.1 Overview
	11.2 PG Functions
	11.2.1 Information
	11.2.2 Memory Functions and Transfer Functions
	11.2.3 Program Test

	11.3 Activities at Checkpoints
	11.4 Serial Link PG - PLC via 1st or 2nd Serial Interface
	11.5 Parallel Operation of Two Serial PG Interfaces
	11.5.1 Installation
	11.5.2 Operation
	11.5.3 Sequence in Certain Operating Situations

	12 Appendix
	Appendix 1: Technical Data of the CPUs in the S5-135U
	Appendix 2: Error Identifiers
	Appendix 3: STEP 5 Operations not Contained in the CPU 928B
	Appendix 4: Identifiers for the Program Processing Levels
	Appendix 5: Example "ISTACK Evaluation"

	13 Further Reading
	14 Index and Lists
	List of Abbreviations
	Index
	List of Tables and Figures
	List of Figures

