

SIMATIC

Loadable Driver for CP 341
Modbus ASCII Slave with 32-Bit Extensions
 Manual

SIMATIC

Loadable Driver for CP341
Modbus Protocol
ASCII Format
S7 is Slave
with 32-Bit Extensions
Manual

Edition 1.0

Preface, Contents

Product Description 1

Installation 2

Mode of Operation 3

Commissioning the Driver 4

Commissioning the FB 5

CPU – CP Interface 6

Transmission Protocol 7

Function Codes 8

Diagnostics of the Driver 9

Diagnostics of the FB 10

Appendices

Technical Data A

Wiring Diagrams Multipoint B

Access Cheat Sheat C

Literature List D

Glossary

Safety Precautions and
Warnings

!

!

!

This manual contains warnings, which you should note for your own safety as well as for the
prevention of damage to property. These warnings are indicated by means of a triangle and
displayed as follows in accordance with the level of danger:

Danger

indicates that death, severe personal injury or substantial damage
will result if proper precautions are not taken.

Warning

indicates that death, severe personal injury or substantial damage can result if proper
precautions are not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not
taken.

Notice

draws your attention to particularly important information on the product, handling the product, or
to a particular part of the documentation.

Qualified
Personnel

The equipment may be commissioned and put into operation by qualified personnel only. For
the purpose of safety relevant warnings of this manual a qualified person is one who is
authorized to commission, ground and tag devices, systems and circuits.

Correct Usage

!

Trademarks

Please note the following:

__

Warning

This device and its components may only be used for the applications described in the catalog or
the technical description, and only in connection with devices or components from other
manufacturers which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and
installed correctly, and operated and maintained as recommended.

SIMATIC® and SINEC® are registered trademarks of SIEMENS AG.

The other brand names in this manual may be trademarks use of which by third parties for their
purposes may infringe the proprietors’ rights.

Copyright © Siemens AG 2006 All Rights Reserved

The reproduction, transmission, or use of this document or its contents is
not permitted without express written authority. Offenders will be liable
for damages. All rights reserved, including rights created by patent grant
or registration of a utility model or design, are reserved.

Disclaimer of Liability

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary corrections included
in subsequent editions. Suggestions for improvement are welcome.

© Siemens AG 2006
Subject to change without prior notice.

 Preface

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

iii

Preface
Purpose of this
Manual

The information in this manual will enable you to establish and commission a
data link between a CP 341 and a “Modbus capable” control system.

Required Basic
Knowledge

You require a general knowledge in the field of automation engineering to be
able to understand this manual.

In addition, you should know how to use computers or devices with similar
functions (e.g. programming devices) under Windows 95/98/2000/NT or XP
operating systems. Since loadable driver are based on the STEP 7 software,
you should also know how to operate it. This is provided in the manual
“Programming with STEP 7 V5.2”.

Contents of the
Manual

This manual describes the loadable driver functions and how to create a link to
the hardware and software of communication processor CP 341.

The manual contains the following subjects:
• Product Description / Installation
• Commissioning the Driver / Installation / Parameterization
• Interface CPU-CP
• Transmission Protocol
• Diagnostics Driver
• Application Example

Validity of the
Manual

This manual Issue is valid for the following software package:

Product Identification No. from Version

Loadable Driver for CP 341
Modbus ASCII Slave

6ES7870-1CA00-0YA0 1.0

Note
This manual contains the driver description as is valid at the time of publication.

How to access the
information in this
manual

To enable you to access the information in this manual more easily, we would
like to draw your attention to the following:

• The next few pages contain a complete list of contents.

 Preface

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

iv

Further sources of
information

Any further information regarding CP 341 (installation, commissioning etc.) can
be found in the following manual:

SIEMENS
SIMATIC
CP341 Point to Point Communication
Installation and Parameter Assignment
Manual
C79000-G7076-C341-..

Further information regarding STEP7 can be found in the following manuals:

SIEMENS
SIMATIC Software
Standard Software for S7 and M7
STEP7 User Manual
C79000-G7000-C502-..

SIEMENS
SIMATIC Software
System Software for S7-300/400
System- and Standard Functions
Reference Manual
C79000-G7000-C503-..

Queries Should you have any queries regarding the use of the driver described in this
manual, which are not answered in this documentation please contact the
relevant person at Siemens who supplied you with this driver.

Terminology This documentation uses the terms CP or CP341.

Scope of
Application

The driver described in this manual serves as a loadable protocol for CP341,
which may be used instead of Standard Protocols 3964R, RK512, and ASCII.

Note

With this driver, modifications or expansions to the sequences between CP and
CPU are possible.

These modifications and expansions may apply in particular to event classes or
event numbers available for diagnostic purposes.

Furthermore please note that this manual only describes the modifications and
expansions as against the standard functions. Basic information may be found in
the manuals mentioned in section “Further Sources of Information”.

In order to ensure safe use of the driver, detailed knowledge of the functionality
of CP341 is a pre-requisite.

Contents

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

v

Contents

1 Product Description.. 1-1

1.1 Usage Possibilities... 1-1

1.2 Hardware and Software Prerequisites... 1-2

1.3 Summary of the Modbus Protocol ... 1-3

1.4 Notes.. 1-4

2 Installation ... 2-1

2.1 Use of the Dongle .. 2-1

2.2 Interface Connection.. 2-1

3 Mode of Operation of the Data Link .. 3-1

3.1 Components of the SIMATIC / Modbus Slave Data Link 3-1

3.2 Task Distribution .. 3-2

3.3 Used Modbus Function Codes .. 3-2

3.4 Data Areas in the SIMATIC CPU... 3-3

3.5 Access with Bit-Orientated Function Codes .. 3-4

3.6 Access with Register-Orientated Function Codes... 3-5
3.6.1 Access to Registers “with 32-Bit Register” Not Set ... 3-6
3.6.2 Access to Registers ”with 32-Bit Register” Set.. 3-8
3.6.3 Access with Function Code 4 .. 3-9

3.7 Enable Write Access.. 3-10

4 Commissioning the Driver ... 4-1

4.1 Installing the Driver on the STEP 7 Programming Device / PC........................... 4-1

4.2 Uninstalling the Driver.. 4-2

4.3 Configuring the Data Link CP in Step7.. 4-2

4.4 Assigning Parameters to the CP ... 4-3

4.5 Assigning Parameters to the Loadable Driver ... 4-4

4.6 Loading the Driver to the CP ... 4-4

Contents

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

vi

4.7 Loading the Configuration and Parameter Assignment Data 4-5

5 Modbus ASCII Driver Specific Parameters... 5-1

5.1 Modbus Slave Protocol Parameters .. 5-1

5.2 Conversion of Modbus Addresses for Bit Functions ... 5-3

5.3 Conversion of Modbus Addresses for Register Functions 5-7
5.3.1 Conversion for Register Functions in Standard Mode... 5-7
5.3.2 Conversion for Register Functions in Mode “with 32-Bit Register”...................... 5-9

5.4 Limits for Write Functions .. 5-10

5.5 RS422/485 (X27) Interface.. 5-12

5.6 RS232 Secondary Signals... 5-13

6 Commissioning the Communications FB... 6-1

6.1 Installing the FB ... 6-1

6.2 STEP7 Project ... 6-1

6.3 FB 81 Parameters.. 6-3

6.4 Program Call .. 6-4

6.5 Cyclic Operation .. 6-6

7 CPU – CP Interface.. 7-1

8 Transmission Protocol ... 8-1

8.1 Message Structure... 8-1

8.2 Exception Responses .. 8-5

8.3 RS 232C Secondary Signals ... 8-6

9 Function Codes ... 9-1

9.1 Function Code 01 – Read Coils... 9-2

9.2 Function Code 02 – Read Discrete Inputs... 9-5

9.3 Function Code 03 – Read Holding Registers in Standard Mode......................... 9-8

9.4 Function Code 03 – Read Holding Registers in Mode “with 32-Bit Register” ... 9-11

9.5 Function Code 04 – Read Input Registers .. 9-16

9.6 Function Code 05 – Write Single Coil.. 9-19

Contents

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

vii

9.7 Function Code 06 – Write Single Register in Standard Mode........................... 9-21

9.8 Function Code 06 – Write Single Register in Mode “with 32-Bit Register”........ 9-24

9.9 Function Code 08 - Diagnostics ... 9-28

9.10 Function Code 15 – Write Multiple Coils ... 9-29

9.11 Function Code 16 – Write Multiple Registers in Standard Mode....................... 9-32

9.12 Function Code 16 – Write Multiple Registers in Mode “with 32-Bit Register” ... 9-35

10 Diagnostics of the Driver.. 10-1

10.1 Diagnostics via Display Elements (LEDs) ... 10-2

10.2 Diagnostic Messages of the Function Blocks of the CP 341............................. 10-2

10.3 Table of Errors / Events ... 10-3
10.3.1 Error Codes for “CPU Job Errors” ... 10-3
10.3.2 Error Codes for “Receive Errors”... 10-4
10.3.3 Error Codes in SYSTAT for “General Processing Errors” 10-6

11 Diagnostics of the Communications FB... 11-1

11.1 Diagnostics via Parameters ERROR_NR, ERROR_INFO................................ 11-1
11.1.1 Errors during “Initialization”.. 11-2
11.1.2 Errors during “Processing of Function Codes” .. 11-2
11.1.3 “Other” Errors... 11-3

A Technical Data.. 1

B Wiring Diagrams Multipoint .. 1

C Access Cheat Sheat... 1

D Literature List ... 1

Glossary .. 1

Product Description

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

1-1

1 Product Description

1.1 Usage Possibilities

Position in the
System

The Driver described here is a software product for communication processor
CP341.

Environment CP341 can be used in automation systems S7-300 and can establish serial
communication links to partner systems.

Function of the
Driver

This driver, together with the appropriate function block, enables you to establish
a communication link between communication module CP341 and “Modbus
capable” control systems.

The transmission protocol used is the Modbus Protocol in ASCII Format. In
addition, de-facto standard 32-bit extensions are supported for accessing floating
point and double-word registers in compatible slaves. Data transmission is carried
out in accordance with the Master-Slave principle.

The Modbus master has the initiative during the transmission while the the
CP341 (installed in the the S7 CPU rack) operates as the slave.

Function Codes 01, 02, 03, 04, 05, 06, 08, 15 and 16 can be used for
communication between the CP and the host system.

The MODBUS “Starting Address” in the request message from the master is
interpreted by the driver “in an S7 way.”

This means that it is possible to:

• read and write memory bits, outputs, data blocks,
• read inputs bits

in the S7 CPU.

The interpretation of the MODBUS “Starting Address” is explained in the following
sections.

Usable Interfaces
and Protocols

You can use CP341 with RS232, TTY, or RS422/485 (X27) interfaces.

With this driver, it is possible to use the RS422/485 (X27) interface submodule in
both 2-wire operation and 4-wire operation. In 2-wire operation it is possible to
connect up to 32 slaves to one master in half-duplex operation, thus creating a
multipoint connection (network). However, this slave driver is not usable in a
RS422 multipoint environment since the hardware “Send” line driver never Tri-
States. See Appendix A.

Product Description

Possible System
Configuration

The following figure shows a schematic illustration of a possible system
configuration.

S7-300

CP341

Interfac e
S b d lRS232C/ TTY/ X27

PSU CPU

1.2 Hardware and Software Prerequisites

Useable Module The Driver runs on CP341 with part number 6ES7 341-1AH01-0AE0 as well as -
1BH01 and -1CH01. Also the previous modules -1AH00, -1BH00 and -1CH00 can
be used with this driver.

Dongle In order to use the CP with loadable drivers, you require a dongle. The dongle
with identification number 6ES7870-1CA00 is supplied with the driver.

Loading Memory
of the CPU
(Memory Card)

Every CP interface, for which this loadable driver has been assigned parameters,
requires a CPU loading memory amount of about 25 Kbytes.

With CP 341 the loadable drivers are downloaded directly to the CP 341.
Therefore you do not require a loading memory on the S7-300 CPU. You should
note, however, that this means that you cannot swap out a failed CP 341 containg
the driver with a good CP 341 that does not yet contain the driver without using
the programming device to load the driver.

Software Issue
Levels

Loading of drivers is possible with STEP 7 from issue level 4.02.

An installed version of the Parameter Assignment Tool CP: Point-to-Point
Communication, Parameter Assignment V4.1 or higher.

We recommend to use STEP 7 V5.1 or higher and Parameter Assignment Tool
V5.1 or higher.

Data Structures Prior to project configuration of your S7 data structures, you should ensure that
they are compatible with the user programs of the Modbus Slave systems (clarify
which function codes and which Modbus addresses will be used).

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

1-2

Product Description

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

1-3

1.3 Summary of the Modbus Protocol

Function Codes The type of data exchange between Modbus systems is controlled by Function
Codes (FCs).

Data Exchange The following FCs can be used to carry out data exchange bit-by-bit:
FC 01 Read Coils,
FC 02 Read Discrete Inputs,
FC 05 Write Single Coil,
FC 15 Write Multiple Coils.

The following FCs can be used to carry out data exchange register-by-register:
FC 03 Read Holding Registers,
FC 04 Read Input Registers,
FC 06 Write Single Register,
FC 16 Write Multiple Registers.

Data Areas As a rule, the individual FCs operate in accordance with the table below:

Function
Code

Data Type of Data Type of
Access

01, 05, 15 Coils Bit Output read/write

02 Discrete Inputs Bit Input read only

03, 06, 16 Holding Registers Register (16 bit
or 32 bit)

Output
Register

read/write

04 Input Registers Register (16 bit) Input
Register

read only

Product Description

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

1-4

Address
Representation

Analogous to the partitioning into read/write and read-only areas, data at user
level can be represented as shown in the table below:

Function
Code

Type of Data Address Representation
at User Level (Decimal)

01, 05, 15 Output bit 0xxxx

02 Input bit 1xxxx

04 Input register 3xxxx

03, 06, 16 Holding register 4xxxx

In the transmission messages on the serial transmission line, the addresses
used in the Modbus user system are referenced to 0. In the Modbus user
system itself, these addresses are typically counted beginning with 1.

Example:
If the first holding register in the user system is represented as register 40001, in
the transmission message the value 0000 Hex is transmitted as the register
address when FC 03, 06, or 16 is used to access register 40001
If the 127th coil is represented as coil 00127 in the user system, it is assigned the
coil address 007E Hex (126 decimal) in the transmission message.

Note:
The CP341 driver only deals with the transmitted or received zero-based PDU
addresses. Any translation from the user level address must be handled in the
application program in the S7 PLC or the associated HMI.

1.4 Notes

Data Consistency The data exchange between the S7 CPU and the CP is carried out block-by block
by integrated system functions.

You should also note the section “Data Consistency” in the section “CPU-CP
Interface” in this manual.

Installation

2 Installation

2.1 Use of the Dongle

Introduction In order to run the CP with loadable drivers, you require a dongle. When the
dongle is plugged in, drivers can be loaded.

How to Plug In the
Dongle

Before you can plug in the dongle, you must take the CP out of the rack. At the
back of the CP, above the plugs for the backplane bus, there is a slot into which
the dongle can be inserted.

2.2 Interface Connection

TTY A point-to-point connection to one master can be realized.

Further notes to the interface connection please find in the manual “CP341 Point
to Point Communication”.

RS232C A point-to-point connection to one subsystem can be realized. It is possible to use
RS232 auxiliary signals for e.g., modem control.

Further notes to the interface connection please find in the manual ‘“CP341 Point
to Point Communication”.

X27 (2-wire,
RS485)

A multipoint connection (network) connecting up to 32 slaves to one Master can
be created directly.

The driver of the CP performs the switchover of the receive-2-wire line between
transmit and receive.

Schematic connection: 1 Master system, 1 slave at the bus

S IM ATIC C P341
M O D BU S S lave

T /R (A)

T /R (B)

G ND

C hassis sh ie ld

R (A) 4

R (B) 11

G N D 8

 C hassis sh ie ld

M O D BU S M aster

Further notes to the interface connection please find in the manual “CP341 Point
to Point Communication”.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

2-1

Installation

X27 (4-wire,
RS422)

A Point-to-Point connection to one slave can be created.

The direct construction of a multipoint connection (network) connecting more than
one slave is not possible when one or more of the slaves is a CP341 (See
Appendix A).

 Schematic connection: 1 Master system, 1 Slave

S IM A T IC C P 341
M O D B U S S lave

R (A)

R (B)

G N D

C hass is sh ie ld

T (B) 9

R (A) 4

G N D 8

 C hass is sh ie ld

M O D B U S M aste r

T (A) 2

R (B) 11

R (B)

T (A) T (A)

T (B)

Further notes to interface connection please find in the manual “Point-to-Point
Data Link CP341”.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

2-2

Mode of Operation of the Data Link

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-1

3 Mode of Operation of the Data Link

General
Information

The supplied data link converts data access of the Modbus protocol to the specific
memory areas of the SIMATIC S7 CPU.

3.1 Components of the SIMATIC / Modbus Slave Data Link

Modbus Slave
Data Link

The Modbus slave data link for the CP consists of two parts:

1) Loadable Driver for the CP

2) Modbus Communications Function Block for the SIMATIC S7 CPU

Modbus Slave
Communications
FB

In addition to the loadable Modbus slave driver, the SIMATIC Modbus slave data
link requires a special Communications FB in the S7 CPU.

This can be found on the supplied CD for Modbus in the STEP 7 library
Modbus_ASCII. It contains the Modbus communications function block FB81.

The call of the FBs is shown in the example OBs in the STEP 7 project file
Examples\MB_ASCII.

The Modbus communications FB processes all functions necessary for the data
link.

The supplied Modbus slave communications function block FB81 must be called
in the cyclic program of the user program. The Modbus communications FB uses
an instance data block as the work area.

Note
Any modifications carried out to the supplied function block will invalidate the
warranty. Consequential damages cannot be claimed.

Modbus Slave
Driver

The loadable driver realizes the Modbus protocol and maps the Modbus coil and
register addresses to the SIMATIC memory areas.

The loadable driver is loaded into SIMATIC S7-300 using the parameter
assignment tool CP: Point-to-Point Communication, Parameter Assignment where
it is automatically transferred into the CP.

Mode of Operation of the Data Link

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-2

Parameters The parameters and operating modes listed below must be set for the loadable
driver using the parameter assignment tool.

• Transmission rate, parity
• Slave address (Modbus) of CP
• Operating mode (normal, interference suppression)
• Character delay time
• Address areas for FC01, 05, 15
• Address areas for FC02
• Base DB number for FC03, 06, 16
• Base DB number for FC04
• Ranges for write access

3.2 Task Distribution

Task Distribution Modbus function codes 01, 02, 03, 04, 06, and 16 are processed by the CP
directly.

For function codes 05 and 15 the communications FB81 carries out data input
into the SIMATIC memory area bit-by-bit.

3.3 Used Modbus Function Codes

Used Function
Codes

The following Modbus function codes are supported by the driver:

Function
Codes

Function in accordance
with Modbus Specification

General Description

01 Read Coils Read bits

02 Read Discrete Inputs Read bits

03 Read Holding Registers Read registers (words/dwords)

04 Read Input Registers Read registers (words)

05 Write Single Coil Write 1 bit

06 Write Single Register Write 1 register (word/dword)

08 Diagnostic Subfunction 0 only, echo rcvd word

15 Write Multiple Coils Write multiple contiguous bits

16 Write Multiple Registers Write multiple contiguous registers
(words/dwords)

Mode of Operation of the Data Link

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-3

3.4 Data Areas in the SIMATIC CPU

Data Areas The individual FCs access the following SIMATIC data areas in the PLC:

Function
Code

Modbus Data
Type

SIMATIC Data
Type

Type of Access

Memory bits

Outputs

01 Read Coils

Data block bits

Read bit-by-bit

Memory bits

Inputs

02 Read Discrete
Inputs

Data block bit

Read bit-by-bit

03 Read Holding
Registers

Data block Read word-by-word
Read dword-by-dword

04 Read Input
Registers

Data block Read word-by-word

Memory bits

Outputs

05 Write Single Coil

Data block bit

Write bit

06 Write Single
Register

Data block Write word
Write dword

08 - - Echo received word

Memory bits

Outputs

15

Write Multiple Coils

Data block bits

Write bit-by-bit

16 Write Multiple
Registers

Data block Write word-by-word
Write dword-by-dword

Address
Transformation

The Modbus Starting Address in the messages is interpreted by the driver “in an
S7 way” and is mapped to the SIMATIC memory area.

Access to the individual SIMATIC memory areas can be specified by the user by
means of the parameter assignment tool CP: Point-to-Point Communication,
Parameter Assignment.

Mode of Operation of the Data Link

3.5 Access with Bit-Orientated Function Codes

Function Codes
01, 05, 15

The coil access function codes 01, 05, and 15 allow both read and write access
to the SIMATIC memory areas memory bits, outputs, data block bits.

You can use the parameter assignment tool to map three distinct ranges of
Modbus coil addresss to SIMATIC memory bits, output bits and data block bits, as
specified by a “commence at” address. This is illustrated in the following diagram.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-4

 data block commence at
 DBiiiii.DBX0.0

 memory bits commence at
 Muuuuu.0

from aaaaa

to bbbbb

 outputs commence at
 Qooooo.0

from ccccc

to

from eeeee

to fffff

MODBUS Address in
Transmission Message

SIMATIC Memory Area

Function Code 02 The discrete output access function code 02 permits read-only access to the
SIMATIC memory areas memory bits, inputs, data block bits

You can use the parameter assignment tool to map three distinct ranges of
Modbus discrete input addresss to SIMATIC memory bits, input bits and data
block bits, as specified by a “commence at” address. This is illustrated in the next
diagram.

The Modbus discrete input address ranges and corresponding SIMATIC memory
areas of FC 02 may be selected independently from those of FC 01, 05, and 15.

Mode of Operation of the Data Link

from kkkkk

to lllll

 memory bits commence at
 Mvvvvv.0

 inputs commence at
 Izzzzz.0

MODBUS Address in
Transmission Message

from nnnnn

to rrrrr

SIMATIC Memory Area

from sssss

to ttttt

 data block commence at
 DBjjjjj.DBX0.0

3.6 Access with Register-Orientated Function Codes

Function Codes
03, 06, 16

The holding register access function codes 03, 06, and 16 permit read and write
access to the SIMATIC memory area data blocks.

Two different access modes are carried out, depending on how the parameter
“with 32-Bit Register” is set..

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-5

Mode of Operation of the Data Link

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-6

3.6.1 Access to Registers “with 32-Bit Register” Not Set

Calculation of
Resulting DB
Number

The holding register access function codes 03, 06, and 16 permit read and
write access to the SIMATIC memory area data blocks. When parameter
“with 32-Bit Register” is not set (standard Modbus mode) all holding registers
are interpreted as 16-bit entities.

Calculation of the required data block number is carried out in two steps.

1) You must use the parameter assignment tool to specify a base DB
number. This base DB is the first DB which can be accessed.

2) The Modbus start_register address (Register Number) transmitted
in the received message is interpreted as follows:

Modbus Register Number (start_register)

15 9 8 7 0 Bit

Offset DB Number = x Word_number

Resulting DB Number

The resulting DB number which is then accessed, is calculated as follows:
Base DB number + Offset DB number. (The Base DB number is set with the
parameter assignment tool and Offset DB number comes from the “x” value in
the Modbus start_register.)

This means that it is possible to access a memory area consisting of 128
consecutive DBs (data blocks) within the entire addressable data block area
(65535 DBs).

Word Number in DB

Via the Word_number it is possible to address the area from DBW 0 to DBW
1022 within each data block.

The DBs which are normally organized in bytes are in this instance interpreted
by the driver as follows.

Mode of Operation of the Data Link

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-7

16-Bit Registers (“Word_number” and “x” comes from “start_register”)

Word_number 0 DBx DBW 0 (= DBB 0/1)
1 2 (2/3)
2 4 (4/5)
3 6 (6/7)
: : (: / :)

511

accesses

DBW 1022 (1022/1023)

Mode of Operation of the Data Link

3.6.2 Access to Registers ”with 32-Bit Register” Set

Function Codes
03, 06, 16

The holding register access function codes 03, 06, and 16 permit read and write
access to the SIMATIC memory area data blocks. With parameter “with 32-Bit
Register” set, holding registers are interpreted as 16-bit or 32-bit entities
depending upon their Modbus address range.

When parameter “with 32-Bit Register” is set, three SIMATIC data blocks (DB)
containing the following data types can be defined and accessed via Modbus:

• 16-bit integer

• 32-bit integer

• 32-bit float

When “with 32-Bit-Register” is set, each data block can be accessed up to
DBW 65534 or DBD 65532, depending on the number of registers defined.

You use the parameter assignment tool to map three distinct ranges of Modbus
holding register addresses to the three SIMATIC data blocks (DBs), as specified
by a “commence at” address. This is illustrated in the next diagram.

 data block commence at
 DBxxnnn.DBD0

 data block commence at
 DBxxkkk.DBW0

16-bit integer
from xxaaa

to xxbbb

 data block commence at
 DBxxlll.DBD0

32-bit integer
from xxccc

to xxddd

32-bit float
from xxeee

to xxfff

MODBUS Start_register
in Received Message

SIMATIC Memory Area

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-8

Mode of Operation of the Data Link

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-9

The DBs which are normally organized in bytes are in this instance interpreted by
the driver as follows.

16-Bit Integer

Start_register xxaaa+0 DB xxkkk DBW 0 (= DBB 0/1)
xxaaa+1 2 (2/3)
xxaaa+2 4 (4/5)
xxaaa+3 6 (6/7)

: : (: / :)

:

accesses

: (: / :)

32-Bit Integer, 32-Bit Float

Start_register xxeee+0 DB xxnnn DBD 0 (= DBB 0 to 3)
xxeee+1 4 (4 to 7)
xxeee+2 8 (8 to 11)
xxeee+3 12 (12 to 15)

: : (: / :)

:

accesses

: (: / :)

3.6.3 Access with Function Code 4

Function Code 04 The input register read function code 04 permits read-only access to SIMATIC
memory area data blocks.

The mode and operation of this access is the same as the method described in
section 3.6.1 but only reading is permitted

Function code 04 has its own base DB number that must be set with the
parameter assignment tool. This will enable you to access a second independent
read-only area consisting of 128 DBs.

These DBs have read-only access; it is not possible to write to them. Also, they
are only accessible as 16-bits per addressed Modbus input register (setting “with
32-Bit Register” does not enabled 32-Bit access for Function Code 04).

Mode of Operation of the Data Link

3.7 Enable Write Access

General You can use the parameter assignment tool to specify areas which enable write
access from the Modbus master system. With a Modbus master, it is not possible
to write outside these areas.

If the master tries to access any SIMATIC memory areas which are outside the
enabled area, access is denied by means of the Modbus “Illegal Data Address”
exception response, code 02.

Function Codes 05
and 15

For the write coils function codes 05 and 15 you must enable or allow access to
the relevant SIMATIC memory areas (M and Q). You must set the enable ranges
for the two data types M and Q as shown in the diagram below.

For the write function to data block bits you cannot set an enable range for
writing. The entire accessible DB memory space remains writeable.

Function Codes 06
and 16 in standard
mode

For the write register function codes 06 and 16 in “standard mode” (“with 32-
Bit Register” not set) you must enable or allow access to the relevant SIMATIC
memory area (a range of DBs as shown in the diagram below).

Function Codes 06
and 16 in mode
“with 32-Bit
Registers”

For the write function codes 06 and 16 in mode “with 32-Bit Register” you
cannot set an enable range for writing to DB. The entire accessible DB memory
space remains writable.

The following diagram shows approximately how the parameter entry screen
looks for enabling the three contiguous writable ranges for M, Q and DB data
types.

Enable Write
Access

FC5/15 Memory Bits M MIN-M (Byte)

 MAX-M (Byte)

 Outputs Q MIN-Q (Byte)

 MAX-Q (Byte)

SIMATIC Memory Area

FC6/16 Data Blocks MIN-DB-No.
 (resulting DB number)

only available in standard mode

 MAX-DB No.

Function
Code

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-10

Commissining the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-1

4 Commissioning the Driver

General
Information

All statements in the following sections referring to STEP7 or configuring or
setting parameters for CP-PtP, CP341 or the Driver are related to the STEP7-
Version 5.3 SP3.

Operation flows, names and directory names might be different in other STEP7
versions.

4.1 Installing the Driver on the STEP 7 Programming Device / PC

Prerequisites To make the driver installation possible, a STEP7-Package and the
Parameter Assignment Tool CP: Point-to-Point Communication, Parameter
Assignment must have been installed before.

Installation Installation of the driver consisting of driver code and driver specific configuration
screens for STEP7:
Insert your Modbus ASCII Driver CD into the CD-ROM drive and follow step-by-
step the instructions that are automatically displayed by the installation program.
If the installation program fails to automatically run, perform these steps:

1. Using Windows Explore, navigate to the CD-ROM drive and go to the directory
MODBUS_ASCII_SLAVE and double-click Setup.EXE file to start the
installation procedure.

2. Follow step-by-step the instructions that are displayed by the installation
program.

Result: The driver and the parameterization masks are installed in the following
directory: [c:\Program Files\]SIEMENS\Step7\S7fptp\S7Driver where the
contents of [] are selectable during the installation procedures

The directory includes the following files:
• S7wfpnab.dll
• S7wfpnax.cod
• S7wfpnbx.cod

Commissioning Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-2

4.2 Uninstalling the Driver

The driver can be uninstalled from the STEP 7 package by selecting “Control
Panel”, “Add / Remove Software” Find the driver in the list and follow the
instruction for uninstalling it.

The user can check if all the files S7wfpna?.*, S7wfpnb?.*, S7wfpnc?.* have been
deleted successfully in the [c:\Program Files\]SIEMENS\Step7\S7fptp\S7Driver
directory.

Note:
Before uninstalling the package “Parameter Assignment Tool CP: Point-to-Point
Communication, Parameter Assignment“ all the loadable drivers must first be
uninstalled.

4.3 Configuring the Data Link CP in Step7

Introduction The configuration of a data link comprises the hardware allocation in the
configuration table using HW config. The configuration can be carried out using
the STEP 7 software.

S7 Project Before you can carry out the configuration, you must have created a S7 Project
with STEP 7.

Project
Components

Insert the required project components into the opened project using the SIMATIC
Manager. You must have a “SIMATIC 300 Station” in your project.

Before an insertion, you must select the target project name by clicking it. To
insert the 300 Station, from the Insert menu of Simatic Manager do:

Insert Station SIMATIC 300 Station

Hardware
Configuration

The configuration of the hardware comprises defining the hardware components
themselves, and also their properties.

To start the hardware configuration, select the SIMATIC 300 station and double-
click “Hardware” (or select the menu command Edit Open Object). Use the
menu command Insert Hardware Components to insert a RACK- 300, a PS-
300, a CPU-300 from SIMATIC 300, and the CP PtP from CP-300 with the
appropriate part number.

A detailed description of how to configure S7-300 modules can be found in the
User Manual for STEP 7.

Commissioning Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-3

4.4 Assigning Parameters to the CP

General After you have arranged the modules in your rack using “Hardware
Configuration,” you must assign parameters to them.

To start the parameter assignment tool, double-click the CP in “Hardware
Configuration” or click the CP and select the menu command Edit Object
Properties.

Properties CP 1) Properties - CP Basic Parameters Tab

Clicking the “Parameter…” button along the bottom opens the protocol
selection interface “Assigning Parameters to Point-to-Point Connection.”
Here you can select the required driver protocol, Modbus ASCII Slave from
the drop-down menu.

After selecting the “Protocol,” you can carry out Parameter Assignment of
the Driver (start by double-clicking the envelope symbol) labeled “Protocol.”

A detailed description of how to select the protocol and assign parameters to
the dialog boxes for the loadable driver can be found in the section “Assigning
Parameters to the Loadable Driver.”

After parameter assignment is complete, you return to the “Assigning
Parameters to Point-to-Point Connection” screen and save any changes
before closing it. This bring you back to the “Properties - CP” dialog box.

2) Properties - CP Addresses
No settings are required in the “Addresses” tab (Properties - CP dialog box).

3) Properties - CP Basic Parameters
No settings are required in the “Basic Parameters” tab (Properties - CP
dialog box).

4) Properties - CP General
No settings are required in the “General” tab (Properties - CP dialog box).

You can complete the parameter assignment of the CP by clicking “OK” in the
“Properties - CP” dialog box. You return to the “Hardware Configuration”
dialog box.

Save the parameter assignment and close the “Hardware Configuration”
dialog box. You return to the basic menu of the STEP 7 project.

Commissioning Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-4

4.5 Assigning Parameters to the Loadable Driver

Opening the
Parameter
Assignment Tool
CP-PtP

Select the SIMATIC station and double-click “Hardware” (or select the menu
command Edit Open Object) to start the “Hardware Configuration.” Click the
CP and select the menu command Edit Object Properties (or just Double-click
the CP). Click the “Parameter…” button along the bottom to open the protocol
selection dialog box.

Protocol Selection In addition to the standard protocols, the selection box also displays all installed
loadable drivers. Select “Modbus ASCII Slave” for this driver. Double-clicking the
symbol for the transmission protocol (envelope icon) opens the dialog box where
the protocol-specific parameters are set.

Driver-Specific
Parameters

The parameters described in Section 5 can be set for this driver in the individual
dialog boxes.

Selecting
Parameters

Select the parameters required for your data link and exit the individual dialog
boxes by clicking “OK”.

4.6 Loading the Driver to the CP

Loading the Driver After selection of a loadable driver in the selection box “Protocol”, you must load
the driver to the CP one time. Double clicking on to the icon “Load Drivers” gets
you to the dialogue where the driver is loaded.

• You need an online connection to the CPU to load drivers.

• The tab “Load Drivers” shows you, which driver is already loaded on the CP
and which driver was selected by you.

• Once again click “Load Drivers” and confirm with “yes”. The transfer of the
driver to the CP is carried out.

• After the transfer the information “Driver version online on the module” is
updated.

• If the driver in the current version already exists on the CP, the transfer in
cancelled with the message “Driver already exists”.

• Click “Close” to return to the main tab.

The error “Module rejected driver download” may occur, when the driver files are
missing or possibly corrupted. In that case a re-installation of the driver is
necessary.

Commissioning Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-5

4.7 Loading the Configuration and Parameter Assignment Data

Data Management On closing the “Hardware Configuration,” the data are automatically saved into
your STEP 7 project.

Loading the
Configuration and
Parameters

The configuration and parameter assignment data can now be loaded online from
the programming device to the CPU. Use the menu command PLC Download
to transfer the data to the CPU.

During CPU startup and each time you switch between STOP mode and RUN
mode, the module parameters of the CP are automatically transferred to the CP
as soon as it can be reached via the S7-300 backplane bus.

The driver code is not saved in the CPU, but directly with the parameter
assignment tool in the retentive memory of the CP 341. You should note,
however, that for this reason you cannot swap out a failed CP 341 containg the
driver with a good CP 341 that does not yet contain the driver without using the
programming device to load the driver.

Further
Information

Please refer to the User Manual for STEP 7 for a detailed description of:

• How to save the configuration and the parameters.

• How to load the configuration and the parameters into the CPU.

• How to read, change, copy, and print the configuration and the parameters.

Modbus ASCII Driver Specific Parameters

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-1

5 Modbus ASCII Driver Specific Parameters

5.1 Modbus Slave Protocol Parameters

Overview of
Transmission
Parameters

Transmission Parameters

Parameter Description Value
Range

Default
value

Baud Rate Data transmission speed in bits /
second

300
600
1200
2400
4800
9600
19200
38400
57600
76800

9600

Data Bits Bit per character 7 7

Stop Bits Amount of stop bits 1
2

1

Parity amount of data bits is completed to
an even number
amount of data bits is completed to
an odd number
no parity bit transferred

even

odd

none

Even

Transmission Rate The transmission rate is the speed of data transmission in bits per second (bps).

Data Bits The amount of data bits describes how many bits represent a character to be
transmitted. With Modbus ASCII 7 data bits are mandatory.

Stop Bits The amount of stop bits defines the smallest possible distance between two
characters to be transferred. With even or odd parity 1 stop bit is pre-defined.
None parity effects two stop bits.

Parity

The parity bit is for data safety; depending on parameter assignment, it completes
the amount of transmitted data bits to either an even or an odd number.
If “no” parity is selected, no parity bit is transmitted. This reduces the safety of
data transmission.

Modbus ASCII Driver Specific Parameters

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-2

Overview of
Protocol
Parameters

Protocol Parameter

Parameter Description Value range Default
value

Slave Address Own slave address of the CP 1 to 255 222

Character
Delay Time

Time period used to monitor
the incoming characters within
a message

1 to 6500
milliseconds in
1ms intervals

1000ms

Operating
Mode

“Normal Operation”
“Interference Suppression”

Normal
Interference
Suppression

Normal

with 32-Bit
Register

Registers can also imply
32-bit values

not selected
selected

not
selected

Slave Address Here you can specify the Modbus Slave address assigned to the CP. The CP only
processes and replies to messages where the received slave address is identical
to its slave address. Messages to other slaves are not processed and not replied
to.

However, the Modbus slave driver does also listen for messages directed to the
special “broadcast address” zero. When a broadcast message is received, any
data to be written to the CPU still occurs (e.g., FC 06, Write Single Register) but
no response is sent. If a read request is contained in the broadcast message
(e.g., FC 03, Read Holding Registers) it should be ignored by all slaves.

Character Delay
Time

When receiving a message the quiet time between characters is measured. If the
quiet time exceeds the character delay time, the message is ignored and an error
is reported in the diagnostic buffer.

Normal Operation In this operating mode, all recognized transmission errors and/or BREAK before
and after receive messages from the master result in an appropriate error
handling. The error is reported in the diagnostic buffer.

Interference
Suppression

If “BREAK” is recognized on the receiving line at the start of the receive message,
or if the CP interface block notices transmission errors before the message, no
error is reported.

The start of the receive message from the master is recognized by means of the
correctly-received start character. Transmission errors and/or BREAK are also
ignored when they occur after the end of the receive message.

with 32-Bit
Register

With standard Modbus, holding registers are always 16-bit values. When
choosing “with 32-Bit Register” mode, holding registers can also imply 32-bit
values (integer and floating point) or 16-bit values when accessed by a master
with register addresses within preset ranges. (Section 5.3.2 explains how these
address ranges are set.).

Modbus ASCII Driver Specific Parameters

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-3

5.2 Conversion of Modbus Addresses for Bit Functions

Overview of FC 01,
05, 15

Conversion of Modbus Addressing for FC 01, 05, 15

Parameter Input Meaning

SIMATIC Area Memory Bits

from 0 .. 65535
(decimal)

Starting with this
Modbus address

Range of Modbus coil
address in transmission
message
(Coil number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
memory bits
(Memory byte number)

commence
at

0 .. 65535
(decimal)

Commence at this
memory byte

SIMATIC Area Outputs

from 0 .. 65535
(decimal)

Starting with this
Modbus address

Range of Modbus coil
address in transmission
message
(Coil number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
Outputs
(Output byte number)

commence
at

0 .. 65535
(decimal)

Commence at this
output byte

SIMATIC Area Data Block

from 0 .. 65535
(decimal)

Starting with this
Modbus address

Range of Modbus coil
address in transmission
message
(Coil number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
Data block
(Data block number)

commence
at

0 .. 65535
(decimal)

Commence at this
data block

DBX0.0

“from” / “to” -
Modbus Address

You can use the “from” address to set the Modbus address which is the start of
the appropriate area; for example, memory bits, outputs, data block bit (= first bit
number of area).

You can use the “to” address to set the Modbus address which is the end of the
appropriate area; for example, memory bits, data block bit (= last bit number of
area).

The “from” / “to” addresses refer to the Modbus coil address in the transmitted
message received by the slave (coil numbers beginning at 0) for function codes
FC 01, 05, and 15.

The individual “from / to” areas must not overlap.

Gaps between the individual “from / to” areas are permitted.

Modbus ASCII Driver Specific Parameters

“Commence at”
SIMATIC Memory
Area

You can use the “commence at” input to specify the start of the SIMATIC area
where the “from” / “to” Modbus area is displayed (= first memory byte-, output
byte-/ data block number of SIMATIC area).

Example

 data block commence at
 DB111.DBX0.0

 memory bits commence at
 M1000.0

from 0

to 2047

 outputs commence at
 Q256.0

from 2048

to 2559

from 4096

to 4415

MODBUS Address in
Transmission Message

SIMATIC Memory Area

The Modbus coil addresses from 0 to 2047 access the SIMATIC memory bits
commencing at memory bit M 1000.0; i.e. length of area = 2048 bits = 256 bytes,
which means last memory bit = M 1255.7.

The Modbus coil addresses from 2048 to 2559 access the SIMATIC outputs
commencing at output Q 256.0; i.e. length of area = 512 bits = 64 bytes, which
means last output bit = Q 319.7.

The Modbus coil addresses from 4096 to 4415 access the SIMATIC data block bit
commencing at DB111.DBX0.0; i.e. length of area = 320 bits = 40 bytes, this
means the last accessed bit in the data block is DB111.DBX39.7.

Note: The commence at Data Block (e.g., DB111) should be large enough to
contain the entire from/to coil address range in the Modbus message. It is not
possible to “roll” to the next higher DB number if the Data Block is smaller.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-4

Modbus ASCII Driver Specific Parameters

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-5

Overview of FC 02

Conversion of Modbus Addressing for FC 02

Parameter Input Meaning

SIMATIC Area Memory Bits

from 0 .. 65535
(decimal)

Starting with this
Modbus address

Range of Modbus Discrete
Input addresses in
transmission message
(Discrete Input number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
memory bits
(Memory byte number)

commence
at

0 .. 65535
(decimal)

Commence at this
memory byte

SIMATIC Area Outputs

from 0 .. 65535
(decimal)

Starting with this
Modbus address

Range of Modbus Discrete
Input address in transmission
message
(Discrete Input number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
Outputs
(Output byte number)

commence
at

0 .. 65535
(decimal)

Commence at this
output byte

SIMATIC Area Data Block

from 0 .. 65535
(decimal)

Starting with this
Modbus address

Range of Modbus Discrete
Input address in transmission
message
(Discrete Input number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
Data block
(Data block number)

commence
at

0 .. 65535
(decimal)

Commence at this
data block

DBX0.0

“from” / “to” -
Modbus Address

You can use the “from” address to set the Modbus address which is the start of
the appropriate area; for example, memory bits, inputs, data block (= first bit
number of area).

You can use the “to” address to set the Modbus address which is the end of the
appropriate area; for example, memory bits, inputs, data block (= last bit number
of area).

The “from” / “to” addresses refer to the Modbus Discrete Input address in the
transmitted message received by the slave (discrete input numbers beginning at
0) for function codes FC 02.

The individual “from / to” areas must not overlap.

Gaps between the individual “from / to” areas are permitted.

Modbus ASCII Driver Specific Parameters

“Commence at”
SIMATIC Memory
Area

You can use the “commence at” input to specify the start of the SIMATIC area
where the “from” / “to” Modbus area is displayed (= first memory byte-, input byte-
/ data block number of SIMATIC area).

Example

 data block commence at
 DB112.DBX0.0

 memory bits commence at
 M 0.0

from 0

to 4095

 inputs commence at
 I 128.0

from 4096

to 5119

from 8192

to 8512

MODBUS Address in
Transmission Message

SIMATIC Memory Area

The Modbus addresses from 0 to 4095 access the SIMATIC memory bits
commencing at memory bit M 0.0; i.e. length of area = 4096 bits = 512 bytes,
which means last memory bit = M 511.7.

The Modbus addresses from 4096 to 5119 access the SIMATIC inputs
commencing at input I 128.0; i.e. length of area = 1024 bits = 128 bytes, which
means last input bit = I 255.7.

The Modbus addresses from 8192 to 8512 access the SIMATIC data block bit
commencing at DB111.DBX0.0; i.e. length of area = 320 bits = 40 bytes, this
means the last accessed bit in the data block is DB112.DBX39.7.

Note: The commencing Data Block (e.g., DB112) should be large enough to
contain the entire from/to Discrete Input address range in the Modbus message. It
is not possible to “roll” to the next higher DB number the Data Block is smaller.

Note The input of values “commence at memory bit” and “commence at data block” are
completely independent of input “commence at memory bit / data block” for
function codes 01, 05, and 15.

This means that with FC 02 it is possible to use a second SIMATIC memory bits
area as well as a second data block (read-only), which are completely
independent from the first.

There is no point in defining memory bytes for simultaneous access with both
FC01 and FC02 but it is still possible to do this.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-6

Modbus ASCII Driver Specific Parameters

5.3 Conversion of Modbus Addresses for Register Functions

5.3.1 Conversion for Register Functions in Standard Mode

Overview of FC 03,
06,16

Conversion of Modbus Addressing for FC 03, 06, 16

Parameter Input Meaning

SIMATIC Area Memory Blocks

Modbus address = 0 in transmission
message
(register number) means access to:

SIMATIC memory area
Data Blocks

commence
at DB

1 .. 65535
(decimal)

Commence at this data block
Commence at DBW 0
(= base DB number)

“Commence at
DB”

You can use the “commence at DB” input to specify the first data block of the
SIMATIC area which is to be accessed (= base DB Number). This DB is
accessed when the register number of the Modbus message has value from 0 to
511, which accesses data word DBW 0 to DBW 1022 (512 words in the base DB
Number). Modbus register addresses between 512 and 1023 access the same
DBW range within DB base DB Number+1. Likewise, the next 512 Modbus
register addresses, between 1024 and 1535, access the first 512 words in DB
base DB Number+2.

Up to 128 successive DBs can be accessed (base DB Number to base DB
Number+127).

The driver interprets the upper (most significant) 7 bits, 15 - 9 of the Modbus
register number for the access to the individual successive DBs It also
interpretes the lower (least significant) 9 bits, 8 – 0 of the Modbus register number
as the word index offset into the addressed DB.

Example

Register Number = 0
means: access to Data Blocks commence
 at DB 800

MODBUS Address in
Transmission Message

SIMATIC Memory Area

You can use Modbus register address 0 to access data block 800 commencing at
DBW 0 in the SIMATIC system. Higher Modbus register addresses (≥ 512, etc.)
access the following DBs DB 801, 802, etc.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-7

Modbus ASCII Driver Specific Parameters

Overview of FC 04

Conversion of Modbus Addressing for FC 04

Parameter Input Meaning

SIMATIC Area Memory Blocks

Modbus address = 0 in transmission
message
(register number) means access to:

SIMATIC memory area
Data Blocks

commence
at DB

1 .. 65535
(decimal)

Commence at this data block
Commence at DBW 0
(= base DB number)

“Commence at
DB”

You can use the “commence at DB” input to specify the first data block of the
SIMATIC area which is to be accessed (= base DB Number). This DB is
accessed when the register number of the Modbus message has value from 0 to
511, which accesses data word DBW 0 to DBW 1022 (512 words in the base DB
Number). Modbus register addresses between 512 and 1023 access the same
DBW range within DB base DB Number+1. Likewise, the next 512 Modbus
register addresses between 1024 and 1535 access the first 512 words in DB
base DB Number+2.

Up to 128 successive DBs can be accessed (base DB Number to base DB
Number+127).

The driver interprets the upper (most significant) 7 bits, 15 - 9 of the Modbus
register number for the access to the individual successive DBs It also
interpretes the lower (least significant) 9 bits, 8 – 0 of the Modbus register number
as the word index offset into the addressed DB.

Note The input of value “commence at DB” is completely independent of input
“commence at DB” for function codes 03, 06, and 16. This means that with FC 04
it is possible to use a second SIMATIC data block area (read-only), which is
completely independent from the first.

Example

Register Number = 0
means: access to Data Blocks commence
 at DB 1200

MODBUS Address in
Transmission Message

SIMATIC Memory Area

You can use Modbus register address 0 to access data block 1200 commencing
at DBW 0 in the SIMATIC system. Higher Modbus register addresses ≥ 512,
1024, etc.) access the following DBs DB 1201, 1202, etc.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-8

Modbus ASCII Driver Specific Parameters

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-9

5.3.2 Conversion for Register Functions in Mode “with 32-Bit Register”

Overview of FC 03,
06,16

Conversion of Modbus Addressing for FC 03, 06, 16

Parameter Input Meaning

SIMATIC Area Memory Blocks

from 0 .. 65535
(decimal)

Starting with this
Modbus address

16-bit integer
Modbus address range in
transmission message
(register number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
Data Block

commence
at

1 .. 65535
(decimal)

Refer to this data block
Commence at DBW 0

SIMATIC Area Memory Blocks

from 0 .. 65535
(decimal)

Starting with this
Modbus address

32-bit integer
Modbus address range in
transmission message
(register number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
Data Block

commence
at

1 .. 65535
(decimal)

Refer to this data block
Commence at DBD 0)

SIMATIC Area Memory Blocks

from 0 .. 65535
(decimal)

Starting with this
Modbus address

32-bit float
Modbus address range in
transmission message
(register number) to 0 .. 65535

(decimal)
Including this

Modbus address

SIMATIC memory area
Data Block

commence
at

1 .. 65535
(decimal)

Refer to this data block
Commence at DBD 0

“from” / “to” -
Modbus Address

You can use the “from” address to set the Modbus address which is the start of
the appropriate area: 16-bit integer, 32-bit integer, 32-bit float. You can use the
“to” address to set the Modbus address which is the end of the appropriate area.

The “from” / “to” addresses refer to the Modbus address in the transmission
message (register numbers starting at 0) for function codes FC 03, 06,16.

The individual “from / to” areas must not overlap.

Gaps between the individual “from / to” areas are permitted.

A data block can include up to 16383 32-bit registers or 32676 16-bit registers.

“Commence at
DB”

You can use the “commence at DB” input to specify the data block of the
SIMATIC area which is to be accessed. This DB is accessed when the register
number of the Modbus message has the “from” value, starting at data word DBW
or DBD 0. Higher Modbus register numbers access the sucessive words or
double words.

Modbus ASCII Driver Specific Parameters

Example

16-bit integer
from 3000 Data Block commence at
to 4999 DB2.DBW0

MODBUS Address in
Transmission Message

SIMATIC Memory Area

32-bit integer
from 5000 Data Block commence at
to 5099 DB3.DBD0

32-bit float
from 7000 Data Block commence at
to 9999 DB4.DBD0

You can use Modbus register address 3000 to access data block 2 commencing
at DBW 0 in the SIMATIC system.; i.e. length of area = 2000 words, which means
last data word = DB2.DBW3998 (last accessed byte is DB2.DBB3999).

You can use Modbus register address 5000 to access data block 3 commencing
at DBD 0 in the SIMATIC system.; i.e. length of area = 100 double words, which
means last DB address = DB3.DBD396 (last accessed byte is DB3.DBB 399).

You can use Modbus register address 7000 to access data block 4 commencing
at DBD 0 in the SIMATIC system.; i.e. length of area = 3000 double words, which
means last DB address = DB4.DBD11996 (last accessed byte is
DB3.DBB11999).

5.4 Limits for Write Functions

Overview of FC 05,
06, 15, 16

SIMATIC Limits for Write Access (FC 05, 06, 15, 16)

Parameter Input Meaning

MIN 0 .. 65535 First enabled memory byte Memory bits M
(Memory byte
number) MAX 1 .. 65535 Last enabled memory byte

MAX = 0 all memory bits disabled

MIN 0 .. 65535 First enabled output byte Outputs Q
(Output byte
number) MAX 1 .. 65535 Last enabled output byte

MAX = 0 all outputs disabled

MIN 1 .. 65535 First enabled DB Data blocks DB:
Resulting DB
number
only available in
standard mode

MAX 1 .. 65535 Last enabled DB
Max = 0 all DBs disabled

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-10

Modbus ASCII Driver Specific Parameters

“MIN” / “MAX”
SIMATIC Memory
Area

For the write function codes, it is possible to specify lower and upper access limits
(MIN / MAX). Write access is permitted within this enabled area only. If the value
for the upper limit (MAX) is 0, it means that the entire memory area, e.g., Q, can’t
be written via Modbus. When selecting the address and size of the enabled
areas, ensure that the memory types and ranges are available in your S7-300
CPU model.

Note:
It is not possible to enable only address 0 (M0 or Q0) for write access.

If the master attempts a write access to an area which is outside the upper / lower
limit, this is rejected by the CP with a Modbus exception response.

The MIN / MAX area for data blocks is only available in standard mode. The MIN /
MAX values for the data block area must be specified as resulting DB numbers
which makes the contents of each DB in the range potentially writable via
Modbus.

Example

Memory bits M MIN 1000

 MAX 1127

SIMATIC Memory Area

Outputs Q MIN 256

 MAX 319

Data Blocks MIN-DB 600
(resulting DB number)

 MAX-DB 699

SIMATIC memory bytes MB 1000 to MB 1127 (FC 05, 15) can be changed with
Modbus write function codes.

SIMATIC outputs output bytes QB 256 to QB 319 (FC 05, 15) can be changed
with Modbus write function codes.

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-11

Modbus ASCII Driver Specific Parameters

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-12

SIMATIC data blocks DB 600 to DB 699 can be changed with Modbus write
function codes (FC 06, 16) in Standard mode. The DB range parameters have no
effect when a DB is written as coils (bits) using FC 05 or 15. The mapping of a
range of coil addresses to a DB (Section 5.2) independently allows that DB to be
writable when its coils are written.

The Data Blocks range parameters are not available when “with 32-Bit Register”
is set. Only selected DBs, as enabled Section 5.3.2, can be written with Modbus
when “with 32-Bit Register” is set.

5.5 RS422/485 (X27) Interface

Overview

X27 (RS 422/485) - Interface Sub-module

Parameter Description Value range Default value

Presetting of
the receiving
line

No presets
Preset “Break”
Preset “High”

none
R(A)5V,R(B)0V
R(A)0V,R(B)5V

R(A)5V,
R(B)0V

X27-Operation
mode

Via the transmission line T(A),
T(B) data are sent,
via the receiving line R(A),
R(B) data are received.
The receiving line R(A),R(B) is
changed-over from send to
receive operation.

Full-duplex /
four-wire-
operation

Half-duplex /

two-wire-
operation

Full-duplex /
four-wire-
operation

“Full-duplex / four-
wire-operation”

In this operating mode, data are sent via the transmission line T(A),T(B) and
received via the receiving line R(A),R(B). Error handling is carried out in
accordance with the function set at the “Driver Operating Mode” parameter
(Normal or Interference Suppression).

“Halfduplex / two-
wire-operation”

In this operating mode, the driver switches the 2-wire receiving line R(A),R(B) of
the interface from send to receive operation. In this operating mode, all
recognized transmission errors and/or BREAK before and after receive messages
are ignored. BREAK level during message pauses is also ignored. The beginning
of the receive message from the slave is recognized by means of the correctly-
received colon character.

The setting R(A) 0V, R(B) 5V (High) is recommended as the preset for the
receiving line.

Modbus ASCII Driver Specific Parameters

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-13

Presetting of the
Receiving Line

“None” (Float)

The two-wire-line R(A),R(B) is not preset.
In this instance the link partner should carry out assignment.

Presetting “R(A) 5V, R(B) 0V” (BREAK)

The two-wire-line R(A),R(B) is preset by the CP as follows:
R(A) --> +5V, R(B) --> 0V (VA - VB ≥ +0,3V).
This means that BREAK level occurs on the CP in the event of a line break.

Presetting “R(A) 0V, R(B) 5V” (High)

The two-wire-line R(A),R(B) is preset by the CP as follows:
R(A) --> 0V, R(B) --> +5V (VA - VB ≤ -0,3V).
This means that HIGH level occurs on the CP in the event of a line break (and / or
when it is running idle, i.e. no slave is transmitting).
Line status BREAK cannot be recognized.

5.6 RS232 Secondary Signals

Overview

Data Transmission

Parameter Description Value range Default value

Automatic use of
RS232 signals

RS232 secondary signals
are enabled

checked
not checked

Not checked
(disabled)

Time to RTS
OFF

Time to elapse after the
transmission before the CP
sets the RTS line to OFF

0 to 655350 ms
in 10 ms steps

1s

Data output
waiting time

Delay before the CP starts
sending of a telegram

0 to 655350 ms
in 10 ms steps

1s

Automatic Use of
RS232 Signals

With this parameter you can choose whether RS 232 C secondary (modem
control) signals are used or not. If this remains unset (box not checked) the CP
neither sets nor checks the secondary signals. When this is set (box checked) the
following two parameters become available..

The description of the used secondary signal please find in Section 8-3 of this
manual.

Time to RTS OFF After a Modbus frame is transmitted the CP waits the defined time to set the RTS
line to OFF.

Data Output
Waiting Time

The data output waiting time is the time that the CP 341 waits for the communication
partner to set CTS to ON after setting the RTS line to ON and before starting the
transmission.

Commisioning the Communcations FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-1

6 Commissioning the Communications FB

6.1 Installing the FB

Supplied CD The Modbus slave communications FB is part of a STEP 7 project which is stored
to the directory EXAMPLES of the STEP 7 software under the name “MB_ASCII”
for CP 341 when the driver is installed. It is also stored in the library
Modbus_ASCII.

You should ensure that there is not already a project with the same name.

Transfer 1) The project file MB_ASCII contains a complete STEP 7 project in the form of
a loadable example.

2) Transfer the Modbus communications FB81 to your user project if you wish to
continue working in your own user project.

3) If required, transfer the startup OBs OB100 and OB101, the cyclic OB1, and
DB81 to your user project. This will enable you to access the call example
for the communications FB, as well as a completed instance DB for the FB.

Note:
OB1 and OB100/OB101 can also be generated themselves. If the instance DB is
not included in the transfer, it must be generated when calling FB81 in
OB1/OB100/OB101.

6.2 STEP7 Project

STEP 7 Project The STEP 7 project file Modsl contains a complete project in the form of a
loadable example consisting of:

• Hardware project configuration with UR1, PS, CPU and CP

• CP parameter assignment

• STEP 7 program with OBs and Modbus communications FB

The blocks in the program file are to be understood as examples only and may be
changed by the user according to his requirements. If necessary, the Modbus
communications FB may be renamed as required.

Commisioning the Communcations FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-2

Contents of Modsl The project file example contains the following:

Block Symbol Comment

FB 81 Modbus slave communications FB

DB 81 Instance DB and work area for

OB 1 Cyclic program

OB 100 Cold restart (complete restart)

FB 7 P_RCV_RK Receive data

FB 8 P_SND_RK Send data

SFC 24 TEST_DB Testing a data block

SFC 36 MSK_FLT Mask synchronous error events

SFC 37 DMSK_FLT Unmask synchronous error events

SFC 38 READ_ERR Read event status register

SFC 41 DIS_AIRT Delay alarms

SFC 42 EN_AIRT Enable alarms

SFC 51 RDSYSST Read system area (SZL) of CPU

The SFCs are integrated in the CPU, the variable tables have been added for
diagnostic purposes only.

Commisioning the Communcations FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-3

6.3 FB 81 Parameters

Name Type Data

Type
Meaning Permitted Assignment

LADDR I Int Base address of the CP Use HW Config assignment

START_TIMER I Timer Timer for “Timeout
initialization”

START_TIME I S5Time Time value “Timeout
initialization

OB_MASK I BOOL Mask I/O access errors,
delay alarms

FALSE:
I/O access errors are not
masked.
TRUE:
Errors in access to
nonexistent I/Os are masked
and alarms are delayed.

CP_START I BOOL Start FB initialization

CP_START_FM I BOOL The initialization is
activated with the rising
edge of CP_START

CP_START_NDR O BOOL Info: write job from CP

CP_START_OK O BOOL Initialization completed
without error

TRUE:
The initialization job could be
completed without error
before the monitoring time
elapsed.

CP_START_ERROR O BOOL Initialization completed
with error

TRUE:
The initialization job could
not be completed without
error even after the
monitoring time had elapsed.

ERROR_NR O Word Error number Assignment, see diagnostics.

ERROR_INFO O Word Error additional info Assignment, see diagnostics.

Commisioning the Communcations FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-4

6.4 Program Call

General
Information

The Modbus communications FB for the loadable Modbus slave driver must be
called in SIMATIC S7 CPU in the cyclic part.

The communications FB initializes the CP and carries out those Modbus functions
which the driver cannot carry out itself. The Modbus slave communications FB
must be called in the user program, even if these function codes are not used by
the Modbus master system.

Communication between the CP and the FB is carried out via the CPU operating
system functions and the function block P_SND_RK and P_RCV_RK which is
called from the FB.

Startup,
Initialization

After each complete restart or restart of the CPU, you must carry out an
initialization of the Modbus communications FB. Initialization is activated with a
rising edge at input CP_START.

First of all the FB deletes the instance DB, reads operand areas I, Q and M from
the CPU with SFC51 SZL_READ, and files them in the instance DB. This enables
you to check the write requirements of the Modbus master system for area
overflow.

The number of the instance DB and the completed initialization sequence is
communicated to the CP by means of a SEND job. As soon as the SEND job has
been completed without error, output CP_START_OK is set and the FB
initialization is complete.

If the SEND job is completed with error, CP_START is reset and
CP_START_ERROR is set. If the initialization was completed with error, Modbus
communication is not possible.

All requests from the Modbus Master system are answered with an Exception
Code message.

Instance DB All data relevant to the Modbus FB are located in an instance data block. This DB
is also the instance DB (multi instances) for the used FBs / SFBs and work area
for the Modbus communications FB. No further data area is required.

The Modbus FB only uses the instance DB and local data.

Access to the instance DB is permitted only as read-only.

Commisioning the Communcations FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-5

Timeout
Initialization
(START_TIME)

After mains-on, the CP needs several seconds for hardware and memory checks
until it is ready for run. Initialization attempts of the Modbus FB during this time
are completed with error. Because of this, the Modbus FB repeats its initialization
job several times during this timeout.

CP_START_OK is set if the initialization could be completed without error within
the parameterized time START-TIME of the timer START-TIMER. If initialization
could not be completed without error after the monitoring time has elapsed,
CP_START_ERROR is set.

I/O Access Errors,
Delay Alarms

Input parameter OB_MASK can be used to instruct the Modbus FB to mask I/O
access errors. In the event of a write access to non-existent I/Os, the CPU does
not go to STOP and neither does it call the error OB.

The access error is, however, recognized by the FB and the function is ended
with an error message to the CP. I/O access errors in the event of a write
command are masked only if parameter OB_MASK is = TRUE.

Prior to masking the access errors, all higher priority alarms are delayed (SFC14),
and they are re-enabled after write access of the FBs and after unmasking the
access errors (SFC42).

This ensures that access errors are recognized by higher priority programs (time
or process alarms) in case the FB is interrupted between masking and
unmasking.

Example
OB100/101

Segment 1

UN M 180.0 // set CP_START
S M 180.0 // !
U M 180.1 // re-set CP_START_FM
R M 180.1 // !

Example OB1 Segment 1

CALL FB 81 , DB81 // Modbus SLAVE
LADDR :=256 // Base address of the CP
START_TIMER :=T120 // Timer “Timeout initi.”
START_TIME :=S5T#5S // Time value “Timeout”
OB_MASK :=TRUE // Mask access errors
CP_START :=M180.0 // Initialization start
CP_START_FM :=M180.1 // Edge trigger memory bit
CP_NDR :=M180.2 // New write job from CP
CP_START_OK :=M180.3 // Initial. without error
CP_START_ERROR :=M180.4 // Initial. with error
CP_ERROR_NR :=MW182 // Error number
CP_ERROR_INFO :=MW184 // Error additional info

Commisioning the Communcations FB

6.5 Cyclic Operation

Communications
FB

The Modbus communications FB carries out all necessary SFB calls and
processes those function codes which the CP cannot run itself (write bit-by bit
with FC05 or FC15 to the SIMATIC areas memory bits, outputs and data
block bits).

Reaction Times One FB sequence (one PLC cycle) plus data transfer times CP--->CPU and
CPU--->CP are required to process the write function codes FC05, FC15. The
other functions which are processed by the CP directly only require data
transfer times CP--->CPU or CPU--->CP.

The CP does not send the reply message to the master system until after the
data transfer CPU--->CP. In this instance the standard reply monitoring time
of 2 sec. can be met.

Processed by
Modbus FB

Request
message

received from
Master

CP sends
reply

message

Data
transfer

CPU CP

Data
transfer

CP CPU

t

The reaction times depend on the cycle time of the CPU program (Modbus
FB) and the CPU type (data transfer CPU<-->CP).

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-6

CPU – CP Interface

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 0.7

7-1

7 CPU – CP Interface

Modbus
Communications
FB

Data transfer between CP and CPU is carried out by the function blocks
P_SND_RK and P_RCV_RK.

The supplied Modbus communications FB calls the FBs. It is not necessary to
program any further FB calls in the SIMATIC user program.

Module Address The only remaining task is to specify the module address (LADDR) at the Modbus
communications FB.

Data Transfer
Length

Transfer of data CP <-> CPU is carried out by the function blocks P_SND_RK
and P_RCV_RK.

The length of data transfer for the interface CPU - CP is a maximum of 1024
bytes. As Modbus PDU restricts the data length to a smaller amount, this limit is
not applicable.

Block Size Data transfer between CPU and CP with function blocks P_SND_RK and
P_RCV_RK is carried out with a block size of 32 bytes to ensure a stable
reaction handling to system alarms of the S7 automation system.

Data Consistency Data consistency during data transmission is given only for the above-listed block
size of 32 bytes or less.

For larger amounts of data, the data is transferred in the listed block size with a
time delay between each block.

Data consistency between the individual blocks cannot be guaranteed because
the data may be processed by the user program at the same time. Access to the
CPU memory is carried out while the user program is running whenever the
P_RCV_PK is passed.

Modbus Slave This means the following for the driver Modbus slave:

If data consistency is required when reading / writing registers or bits, the
amount of data transferred by a single message must be limited to the above
listed block size: for example, a maximum of 16 of 16-bitregisters or 8 of 32-bit
registers with FC 03,04,16 or a maximum of 256 bits with FC 01,02,15. If
required, it is possible to ensure consistent processing of related data areas by
appropriate coordination mechanisms at user level.

Transmission Protocol

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-1

8 Transmission Protocol

General
Information

The procedure used is a code-transparent, asynchronous half-duplex procedure.
Data transfer is carried out without handshake.

Master-Slave
Relationship

The Modbus master system initiates transmission, and after outputting a request
message it waits for a reply message from the addressed slave. Message
exchange from slave to slave is not possible.

ASCII Mode When devices are setup to communicate on a Modbus serial line using ASCII
mode, each 8–bit byte in a message is sent as two ASCII characters.

The allowable characters transmitted for all fields except the start character and
end characters are hexadecimal 0–9, A–F (ASCII coded).

Example: The byte 0X5B is encoded as two characters: 0x35 and 0x42 (0x35
=“5”, and 0x42 =“B” in ASCII).

8.1 Message Structure

Message Structure The data exchange “Master-Slave” and/or “Slave-Master” begins with the
Start Character, followed by Slave Address and Function Code. Then the
data are transferred. The structure of the data field depends on the function
code used. The LRC check is transmitted at the end of the message,
followed by the End Characters.

START ADDRESS FUNCTION DATA LRC END

1 char
colon

2 chars 2 chars 0 up to 2x252
char(s)

2 chars 2 chars
CR, LF

START Start Character :
ADDRESS Modbus Slave Address
FUNCTION Modbus Function Code
DATA Message Data: Byte_Count, Coil_Number, Data
LRC Message Checksum
END End Characters CR, LF

Start Character The start character is a colon (0x3A). The devices monitor the bus
continuously for the ‘colon’ character. When this character is received, each
device decodes the next character until it detects the End Characters
(CR,LF).

Slave Address The slave address can be within the range 1 to 255. The address is used to
address a defined slave on the bus.

Transmission Protocol

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-2

Broadcast
Message

The master uses slave address zero to address all slaves on the bus. Broadcast
Messages are only permitted in conjunction with writing Function Codes 05, 06,
15, and 16. A Broadcast Message is not followed by a reply message from the
slave.

Function Code The function code defines the meaning as well as the structure of a message.
The following function codes are supported by the driver:

Function
Code

Function in accordance with
Modbus Specification

01 Read Coils

02 Read Discrete Inputs

03 Read Holding Registers

04 Read Input Registers

05 Write Single Coil

06 Write Single Register

08 Diagnostic (only sub-func 0, echo)

15 Write Multiple Coils

16 Write Multiple Registers

Data Field DATA The data field DATA is used to transfer the function code-specific data such as:
Bytecount, Coil_Start Address, Register_Start Address; Number_of_Coils,
Number_of_Registers, See also Section “Function Codes”.

The data field contains up to 2 * 252 ASCII characters.

LRC The Longitudinal Redundancy Checking (LRC) field is one byte, containing an
8-bit binary value. The LRC value is calculated by the transmitting device, which
appends the LRC to the message. The device that receives recalculates an LRC
during receipt of the message, and compares the calculated value to the actual
value it received in the LRC field. If the two values are not equal, an error results.

The LRC is calculated by adding together successive 8–bit bytes in the message,
discarding any carries, and then two’s complementing the result. The LRC is an
8–bit field, therefore each new addition of a character that would result in a value
higher than 255 decimal simply ‘rolls over’ the fields value through zero. Because
there is no ninth bit, the carry is discarded automatically.

A procedure for generating an LRC is:

1. Add all bytes in the message, excluding the starting ‘colon’ and ending CRLF.
Add them into an 8–bit field, so that carries will be discarded.

2. Build the twos–complement.

3. Convert the LRC to ASCII.

Transmission Protocol

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-3

Placing the LRC into the Message

When the 8–bit LRC (2 ASCII characters) is transmitted in the message, the
high–order character will be transmitted first, followed by the low–order character.
For example, if the LRC value is 61 Hex (0110 0001):
LRC high 0x36
LRC low 0x31

Message End The end of the message is defined by the characters CR and LF.

Telegram Example The Modbus serial line PDU is describes as follows:

05H Slave Address
08H Function Code (Diagnostics)
00H Return Query Data (echo) sub-func code “High”
00H Return Query Data (echo) sub-func code “Low”
A5H Test Value “High”
C3H Test Value “Low”
XxH LRC

In ASCII transmission mode the following data is transferred on the line:

3AH Start Character
30H Slave Address
35H
30H Function Code
38H
30H Sub Function Code “High”
30H
30H Sub Function Code “Low”
30H
41H Test Value “High”
35H
43H Test Value “Low”
33H
XxH LRC Code High
xxH LRC Code Low
0DH CR
0AH LF

Transmission Protocol

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-4

Error Handling If any of the errors listed below is recognized by the CP during reception of
the reply message, the received data string is rejected and an error is
reported

• wrong start character

• received character is no ASCII character

• overrun of the receive buffer

• received LRC incorrect

• transmission error in a character (parity, framing or overrun error)

• character delay time elapsed

• BREAK (line break or DSR or CTS not asserted)

If BREAK is recognized on the receiving line by the CP during output of a
message, an error is reported too.

Transmission Protocol

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-5

8.2 Exception Responses

Exception
Responses

On recognition of an error in the request message from the master (for example,
register address illegal), the slave sets the highest value bit in the function code of
the reply message. This is followed by transmission of one byte of error code
(Exception Code), which describes the reason for the error.

Exception Code
Message

The error code reply message from the slave has the following structure:
for example, slave address 5, function code 5, exception code 02

Reply Message from Slave EXCEPTION_CODE_xx:

05H Slave Address
85H Function Code
02H Exception Code (1..4)
XxH LRC

The following error codes are sent by the driver:

Exception
Code

Meaning in accordance
with Modbus
Specification

Cause

01 Illegal Function Illegal function code received

02 Illegal Data Address Access to a SIMATIC area which is not
enabled (see parameter assignment -
areas, limitation)

03 Illegal Data Value Amount of bits/registers too large,
data field not FF00 or 0000 for FC05,
diagnostics subcode <> 0000 for FC08.

04 Failure in Associated
Device

Initialization by Modbus communications
FB not yet carried out or FB reports
error, Error during data transfer CP<-
>CPU (for example, DB does not exist).

Transmission Protocol

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-6

8.3 RS 232C Secondary Signals

Available Signals The following RS 232C secondary signals exist on the CP when the RS232C
interface submodule is used:

• DCD (input) Data carrier detect;
 Data carrier detected

• DTR (output) Data terminal ready;
 CP ready for operation

• DSR (input) Data set ready;
 Communication partner ready for operation

• RTS (output) Request to send;
 CP ready to send

• CTS (input) Clear to send;
 Communication partner can receive data from
 the CP (response to RTS = ON of the CP)

• RI (input) Ring indicator;
 Indication of an incoming call

When the CP is switched on, the output signals are in the OFF state (inactive).

You can parameterize the way in which the DTR/DSR and RTS/CTS control
signals are used with the CP 341: Point-to-Point Communication, Parameter
Assignment parameterization interface or control them by means of function
calls (FBs) in the user program.

Using the RS 232C
Secondary Signals

The RS 232C secondary signals can be used as follows:

• When the automatic use of all RS 232C secondary signals is parameterized

• By means of the V24_STAT and V24_SET functions (FBs)

Note
When automatic use of the RS 232C secondary signals is parameterized, neither
RTS/CTS data flow control nor RTS and DTR control by means of the V24_SET
FB are possible. On the other hand, it is always possible to read all RS 232C
secondary signals by means of the V24_STAT FB.

The sections that follow describe how the control and evaluation of the RS 232C
secondary signals is handled.

Transmission Protocol

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-7

Automatic Use of
the Secondary
Signals

The automatic use of the RS 232C secondary signals on the CP is implemented
as follows:

• As soon as the CP is switched by means of parameterization to an operating
mode with automatic use of the RS 232C secondary signals, it switches the
RTS line to OFF and the DTR line to ON (CP ready for use).

• Message frames cannot be sent and received until the DTR line is set to ON.
As long as DTR remains set to OFF, no data is received via the RS 232C
interface. If a send request is made, it is aborted with an error message.

• When a send request is made, RTS is set to ON and the parameterized data
output waiting time starts. When the data output time elapses and CTS = ON,
the data is sent via the RS 232C interface.

• If the CTS line is not set to ON within the data output time so that data can be
sent, or if CTS changes to OFF during transmission, the send request is
aborted and an error message generated.

• After the data is sent, the RTS line is set to OFF after the parameterized time
to RTS OFF has elapsed. The CP does not wait for CTS to change to OFF.

• Data can be received via the RS 232C interface as soon as the DSR line is
set to ON. If the receive buffer of the CP threatens to overflow, the CP does
not respond.

• A send request or data receipt is aborted with an error message if DSR
changes from ON to OFF. The message “DSR = OFF (automatic use of V24
signals)” is entered in the diagnostics buffer of the CP.

Note
When automatic use of the RS 232C secondary signals is parameterized, neither
RTS/CTS data flow control nor RTS and DTR control by means of the V24_SET
FB are not possible.

Note
The “time to RTS OFF” must be set in the parameterization interface so that the
communication partner can receive the last characters of the message frame in their
entirety before RTS, and thus the send request, is taken away. The “data out put
waiting time” must be set so that the communication partner can be ready to
receive before the time elapses.

Transmission Protocol

Time Diagram The following Figure illustrates the chronological sequence of a send request.

Figure 7-1 Time Diagram for Automatic Use of the RS 232C Secondary Signals

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-8

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-1

9 Function Codes

Used Function
Codes

The following Modbus function codes are supported by the driver:

Function

Code
Function in
accordance with
Modbus Specification

Function in SIMATIC S7

Memory bits M

Outputs Q

01 Read coils Read bit-by-bit
(1…2008 bits)

Data block bits

Memory bits M 02 Read discrete inputs Read bit-by-bit
(1…2008 bits)

Inputs I

03 Read holding registers Read word-by-word
(1…125 registers)
Read dword by dword
(1…62 registers)

Data block DB

04 Read input registers Read word-by-word Data block DB

Memory bits M 05 Write single coil Write bit

Outputs Q

06 Write single register Write word/dword Data block bit DB

08 Diagnostic (echo data) - -

Memory bits M

Outputs Q

15 Write multiple coils Write bit-by-bit
(1...1976 bits)

Data block bits

16 Write multiple (holding)
registers

Write word-by-word
(1...123 registers)
Write dword by dword
(1…61 registers)

Data block DB

Note
All Modbus addresses listed below refer to the transmission message level and
not to the user level in the Modbus master system.

This means that the Modbus addresses in the transmission messages begin with
0000 Hex.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-2

Note
When accessing SIMATIC DB addresses with Modbus register addresses, a
direct transition or “roll-over” from one DB number to the subsequent DB number
within a single Modbus Master Request Message is not possible. The Modbus
slave responds to this with a Modbus exception message with error code 02. The
slave CP also posts error code “0E 39” (error while accessing the SIMATIC
range “Data block”) into its diagnostic buffer.

This potential error only applies for standard mode when the parameter “with 32-
Bit Register” is not set since when this parameter is set each Modbus access can
map only to a single SIMATIC Data Block. Please review Sections 3.6.1 and 5.3.1
to fully understand this issue.

Example:
Suppose the base DB number is set to 1 in the slave and the received Modbus
register is 510 with a length (number of registers) of 3, Since 511 is the maximum
register number (maps to DB word offset) before rolling into DB2, the length of 3
would cause access to DB1,DBW1020, DB1,DBW1022 and DB2,DBW0. This
transition from DB 1 to 2 is not allowed. Therefore only a length of 1 or 2 registers
is acceptable when the starting Modbus register value is 510.

9.1 Function Code 01 – Read Coils

Function This function enables the Modbus master system to read individual bits from
the SIMATIC memory areas listed below.

Request Message

ADDR FUNC start_address number of coils LRC

Reply Message

ADDR FUNC Byte_count n n Byte DATA LRC

start_address The Modbus bit address “start_address” is interpreted by the driver as follows:

The driver checks that “start_address” is located within one of the areas which
were specified during parameter assignment in the dialog box “Conversion of
Modbus Addressing for FC 01, 05, 15” (from / to : memory bits, outputs, data
block bits).

If Modbus bit address start address
is located in area

Access is made to the following
SIMATIC memory area

from aaaaa to bbbbb commence at
memory bit

M uuuuu.0

from ccccc to ddddd commence at
output

Q ooooo.0

from eeeee to fffff commence at
data block bit

DBiiiiii.DBX0.0

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-3

The address calculation for access (address conversion) is carried out as follows:

Access beginning
with SIMATIC

Conversion formula (ignore remainder)

Memory byte = ((start_address - aaaaa) / 8) + uuuuu

Output byte = ((start_address - ccccc) / 8) + ooooo

Data block byte = ((start_address - eeeee) / 8)

Access to “Memory Bits”, “Outputs” and “Data Block Bits”

The above table determines the byte index into the addressed SIMATIC data
area. The bit offset is also needed. It is simply the remainder from the above
division operations.

number of coils Values between 1 and 2008 are permitted as the number of coils. This is the
amount of bits read.

Note
Please note the CPU-specific limitations as described in the section “CPU-CP
Interface.”

Example Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 01, 05, 15

Modbus address in
transmission message

SIMATIC memory area

from 0 To 2047 commence at memory bit M 1000.0

from 2048 To 2559 commence at output Q 256.0

from 4096 To 4607 commence at data block bit DB111.DBX0.0

Request Message FUNCTION 01:

05H Slave Address ADDR
01H Function Code FUNC
00H start_address “High”
40H start_address “Low”
00H number of coils “High”
20H number of coils “Low”
xxH LRC

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-4

Reply Message FUNCTION 01:

05H Slave Address ADDR
01H Function Code FUNC
04H Byte_count
01H <DATA 1> M 1008.0 – M 1008.7
17H <DATA 2> M 1009.0 – M 1009.7
02H <DATA 3> M 1010.0 – M 1010.7
18H <DATA 4> M 1011.0 – M 1011.7
xxH LRC

Address Calculation:

The Modbus address “start_address” 0040 Hex (64 decimal) is located in the
“memory bit” area:

Memory byte = ((start_address - aaaaa) / 8) + uuuuu

 = ((64 - 0) / 8) + 1000

 = 1008

The remainder from the above division determines the Bit_Number:

Bit_Number. = ((start_address - aaaaa) % 8) (Modulo 8)

 = ((64 - 0) % 8)

 = 0

Access is made starting from bit M 1008.0 up to and including M 1011.7.

Amount of Bits:

In the request message, the number of coils 0020 Hex (32 decimal) means that
32 Bits = 4 Bytes will be read.

Further Examples Some other access examples are listed in the table below. All examples below
are based on the area specification from the previous example.

Start address Access in SIMATIC beginning with

HEX dec. (decimal)

0000 0 Mem.bit ((0 - 0) / 8) + 1000 M 1000.0

0021 33 Mem.bit ((33 - 0) / 8) + 1000 M 1004.1

0400 1024 Mem.bit ((1024 - 0) / 8) + 1000 M 1128.0

0606 1542 Mem.bit ((1542 - 0) / 8) + 1000 M 1192.6

0840 2112 Output ((2112 - 2048) / 8) + 256 Q 264.0

09E4 2532 Output ((2532 - 2048) / 8) + 256 Q 316.4

1010 4112 DB bits ((4112 - 4096) / 8) + 0 DBX 2.0

10C2 4290 DB bits ((4290 - 4096) / 8) + 0 DBX 24.2

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-5

9.2 Function Code 02 – Read Discrete Inputs

Function This function enables the Modbus master system to read individual bits from the
SIMATIC memory areas listed below.

Request Message

ADDR FUNC start_address number of inputs LRC

Reply Message

ADDR FUNC Byte_count n n Byte DATA LRC

start_address The Modbus bit address “start_address” is interpreted by the driver as follows:
The driver checks whether “start_address” is located within one of these areas,
which was entered during parameter assignment in the dialog box “Conversion
of Modbus Addressing for FC 02” (from / to : memory bits, inputs, and data
block bits).

If Modbus bit address start address
is located in area

Access is made to the following
SIMATIC memory area

from kkkkk to lllll commence at
memory bit

M vvvvv.0

from nnnnn to rrrrr commence at
input

I zzzzz.0

from sssss to ttttt commence at
data block bit

DBjjjjj.DBX0.0

The address calculation for access (address conversion) is carried out as follows:

Access beginning
with SIMATIC

Conversion formula

Memory byte = ((start_address - kkkkk) / 8) + vvvvv

Output byte = ((start_address - nnnnn) / 8) + zzzzz

Data block byte = ((start_address - sssss) / 8)

Access to “Memory bits”, “Inputs” and “Data block bits”

The above table determines the byte index into the addressed SIMATIC data
area. For this, ignore the remainder from the division operations. The bit offset is
also needed. It is simply the remainder from the above division operations.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-6

number of inputs Any value from 1 to 2008 is allowed as the number of inputs. This is the amount
of bits read.

Note:
Please note the CPU-specific limitations as described in the section “CPU-CP
Interface.”

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 02

Modbus address in
transmission message

SIMATIC memory area

From 0 to 4095 commence at memory bit M 2000.0

From 4096 to 5119 commence at input I 128.0

From 8192 to 8351 commence at data block bit DB112.DBX0.0

Request Message FUNCTION 02:

05H Slave Address ADDR
02H Function Code FUNC
10H start_address “High”
30H start_address “Low”
00H number of inputs “High”
18H number of inputs “Low”
xxH LRC

Reply Message FUNCTION 02:

05H Slave Address ADDR
02H Function Code FUNC
03H Byte_count
12H <DATA 1> I 134.0 – I 134.7
34H <DATA 2> I 135.0 – I 135.7
56H <DATA 3> I 136.0 – I 136.7
xxH LRC

Address Calculation:

The Modbus address “start_address” 1030 Hex (4144 decimal) is located in the
area “Inputs”:

Input byte = ((start_address - nnnnn) / 8) + zzzzz

 = ((4144 - 4096) / 8) + 128

 = 134

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-7

The remainder from the above division determines the Bit_Number:

Bit_Number. = ((start_address - nnnnn) % 8) (Modulo 8)

 = ((4144 - 4096) % 8)

 = 0

Access is made starting from input I 134.0 up to and including I 136.7.

Amount of Bits:

In the request message, the number of inputs 0018 Hex (24 decimal) means
that 24 Bits = 3 Bytes will be read.

Further Examples Some other access examples are listed in the table below.

All examples are based on the above area specification.

Start address Access in SIMATIC beginning with

HEX dec. (decimal)

0000 0 Mem.bit ((0 - 0) / 8) + 2000 M 2000.0

0071 113 Mem.bit ((113 - 0) / 8) + 2000 M 2014.1

0800 2048 Mem.bit ((2048 - 0) / 8) + 2000 M 2256.0

0D05 3333 Mem.bit ((3333 - 0) / 8) + 2000 M 2416.5

1000 4096 Input ((4096 - 4096) / 8) + 128 I 128.0

10A4 4260 Input ((4260 - 4096) / 8) + 128 I 148.4

2000 8192 DB bits ((8192 - 8192) / 8) + 0 DBX 0.0

2011 8386 DB bits ((8386 - 8192) / 8) + 0 DBX 24.2

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-8

9.3 Function Code 03 – Read Holding Registers in Standard Mode

Function This function enables the Modbus master system to read data words from a data
block.

Request Message

ADDR FUNC start_register number of registers LRC

Reply Message

ADDR FUNC byte_count n n/2-register DATA (high, low) LRC

start_register The Modbus register address “start_register” is interpreted by the driver as
follows:

Modbus Register Number (start_register)

15 9 8 7 0 Bit

start-register offset_DB_No. start_register word No.

For further address generation, the driver uses the “Base DB number”
(commence at DB xxxxx) entered in the dialog box “Conversion of Modbus
Addressing for FC 03, 06, 16” during parameter assignment.

The address calculation for access (address conversion) is carried out in two
steps as follows:

Access to SIMATIC Conversion Formula

Data block DB (resulting DB) = (Base DB number xxxxx +
 start_register offset_DB_No.)

Data word DBW = (start_register word_No. * 2)

Calculation
Formula for
start_register

If you want to access SIMATIC memory beginning at a particular DBx,DBWy, the
Modbus address start_register required in the master system can be calculated
in accordance with the following formula:

start_register = ((x – Base DB number) * 512) + (y / 2)

This assumes that y is even and is <= 1022. It also assumes that (x – Base DB
number) is not negative and from 0 to 127.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-9

number of
registers

A value from 1 to 125 is possible as the number of registers to be read.
However, you must follow this rule to avoid errors due to rolling to the next DB:

(number of registers)max = 512 – (start_register word No.)

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 03, 06,16

Modbus address in
transmission message

SIMATIC memory area

0 Commencing at data block
(base DB number)

DB 800

Request Message FUNCTION 03:

05H Slave Address ADDR
03H Function Code FUNC
00H start_register “High”
50H start_register “Low”
00H number of registers “High”
02H number of registers “Low”
xxH LRC

Reply Message FUNCTION 03:

05H Slave Address ADDR
03H Function Code FUNC
04H Byte_count
87H <DATA 1> DBW 160 “High”
65H <DATA 2> DBW 160 “Low”
43H <DATA 3> DBW 161 “High”
21H <DATA 4> DBW 161 “Low”
xxH LRC

Address Calculation:

The Modbus address “start_register” 0050 Hex (80 decimal) is interpreted as
follows:

Modbus Register Number (start_register) = 0050H

15 9 8 7 0 Bit

start_register-Offset_DB_No. =
00H (0 decimal)

start_register-word_No. =
0050H (80 decimal)

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-10

Data block DB
(resulting DB)

= (base DB Number xxxxx +
 Start_register-Offset_DB_No.)
= (800 + 0
= 800

Data word DBW = (start_register word_No. * 2)

= (80 * 2)
= 160

Access is made to DB 800, data word DBW 160.

Amount of Registers:

The amount of Modbus registers “number of registers” 0002 Hex (2 decimal)
means 2 registers = 2 data words are read.

Further Examples Some other access examples are listed in the table below.

 Start_register

Start register Base
DB No

Offset
DB_No

Word Number Resulting
DB

DBW

HEX dec. dec. dec. HEX dec. decimal dec.

0000 0 800 0 000 0 800 0

01F4 500 800 0 1F4 500 800 1000

0200 512 800 1 000 0 801 0

02FF 767 800 1 0FF 255 801 510

0300 768 800 1 100 256 801 512

03FF 1023 800 1 1FF 511 801 1022

0400 1024 800 2 000 0 802 0

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-11

9.4 Function Code 03 – Read Holding Registers in Mode “with 32-Bit Register”

General In mode “with 32-Bit Register” 16-bit registers as well as 32-bit registers can be
read. The address calculation in this mode is different than standard mode.

Function This function enables the Modbus master system to read registers mapped to a
data block of the SIMATIC CPU. The registers can contain a 16-bit value as well
as a 32-bit value.

Request Message

ADDR FUNC start_register number of registers LRC

Reply Message Depending on the requested address start_register, whether it belongs to 16-
bit or 32-bit memory area, the reply message has a different form.

Reply message when requesting 16-bit registers:

ADDR FUNC byte_count n n/2-register DATA (high, low) LRC

Reply message when requesting 32-bit register:

ADDR FUNC byte_count n n/4-register DATA (byte 1…4) LRC

start_register The Modbus register address “start_register” is interpreted by the driver as
follows:

The driver checks that “start_register” is located within one of the areas which
were specified during parameter assignment in the dialog box “Conversion of
Modbus Addressing for FC 03, 06, 16” (from / to : 16-bit integer, 32-bit integer,
32-bit float).

If Modbus register address start address
is located in area

Access is made to the following
SIMATIC memory area

16-bit integer from xxaaa to xxbbb commence at
data block

DBxxkkk.DBW0

32-bit integer from xxccc to xxddd commence at
data block

DBxxlll.DBD0

32-bit float from xxeee to xxfff commence at
data block

DBxxnnn.DBD0

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-12

The address calculation for access (address conversion) is carried out as follows:

Register type Access to SIMATIC Conversion Formula

Data block DB fixed number DBxxkkk 16-bit integer

Data word DBW = (start_register – xxaaa) * 2

Data block DB fixed number DBxxlll 32-bit integer

Data word DBW = (start_register – xxccc) * 4

Data block DB fixed number DBxxnnn 32-bit float

Data word DBW = (start_register – xxeee) * 4

register_number The maximum register number depends on the accessed data area. If the 16-bit
area is accessed, values from 1 to 125 are permitted as the number of
registers.

When accessing the 32-bit area, the number of registers is limited from 1 to 62.

The amount of registers contained in number of registers_is read.

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 03, 06,16

Modbus address in
transmission message

SIMATIC memory area

16-bit integer

from 3000 to 4999 commence at data block DB2.DBW0

32-bit integer

from 5000 to 5099 commence at data block DB3.DBW0

32-bit float

from 7000 to 9999 commence at data block DB4.DBW0

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-13

16-Bit Area Accessed

32-Bit Area Accessed

Request Message FUNCTION 03:

05H Slave Address ADDR
03H Function Code FUNC
0BH start_register “High”
EAH start_register “Low”
00H number of registers “High”
02H number of registers “Low”
xxH LRC

Request Message FUNCTION 03:

05H Slave Address ADDR
03H Function Code FUNC
1BH start_register “High”
59H start_register “Low”
00H number of registers “High”
02H number of registers “Low”
xxH LRC

Reply Message FUNCTION 03:

05H Slave Address ADDR
03H Function Code FUNC
04H Byte_count
87H <DATA 1> DBW 100 “High”
65H <DATA 2> DBW 100 “Low”
43H <DATA 3> DBW 101 “High”
21H <DATA 4> DBW 101 “Low”
xxH LRC

Reply Message FUNCTION 03:

05H Slave Address ADDR
03H Function Code FUNC
08H Byte_count
CDH <DATA 5> DBD 4 “byte 1”
DCH <DATA 6> DBD 4 “byte 2”
ABH <DATA 7> DBD 4 “byte 3”
BAH <DATA 8> DBD 4 “byte 4”
11H <DATA 1> DBD 8 “byte 1”
22H <DATA 2> DBD 8 “byte 2”
33H <DATA 3> DBD 8 “byte 3”
44H <DATA 4> DBD 8 “byte 4”
xxH LRC

Address Calculation when 16-bit area is accessed:

The Modbus address “start_register” 0BEA Hex (3050 decimal) is located in the
area “16-bit integer” and interpreted as follows:

Data block DB = fixed number xxkkk

= 2

Data word DBW = (start_register - xxaaa) * 2

 = (3050 - 3000) * 2

 = 100

Read access is made to DB2.DBW100.

The amount of Modbus registers “number of registers” 0002 Hex (2 decimal)
means 2 registers = 2 data words (4 bytes) are read.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-14

Calculation
Formula for
start_register (16-
bit)

If you want to read SIMATIC memory at a particular DBxxkkk,DBDy, the Modbus
address start_register required in the master system can be calculated in
accordance with the following formula:

start_register = (y/2) + xxaaa, where xxkkk is the DB for 16-bit

registers and start_register <= xxbbb

The value xxaaa to xxbbb are the parameters defining the Modbus registers for
the 16-bit integer range.

Address Calculation: when 32-bit area is accessed:

The Modbus address “start_register” 1B59 Hex (7001 decimal) is located in the
area “32-bit float” and interpreted as follows:

Data block DB = fixed number xxnnn

= 4

Data word DBW = (start_register - xxeee) * 4

 = (7001 - 7000) * 4

 = 4

Read access is made to DB4.DBD4.

The amount of Modbus registers “number of registers” 0002 Hex (2 decimal)
means 2 registers = 2 double words (8 byte) are read.

Formula for
start_register (32-
bit)

If you want to read SIMATIC memory beginning at a particular DBxxlll,DBDy or
DBxxnnn,DBDy, the Modbus address start_register required in the master
system can be calculated in accordance with the following formula:

start_register = (y/4) + xxccc, where xxlll is the DB for 32-bit

integer range and start_register <= xxddd

start_register = (y/4) + xxeee, where xxnnn is the DB for 32-bit
float range and start_register <=xxfff

The values xxccc to xxddd and xxeee to xxfff are the parameters defining the
Modbus registers for the 32-bit integer and float ranges respectively.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-15

Further Examples Some other access examples are listed in the table below

Start register Access in SIMATIC beginning with

HEX dec. (decimal)

0C37 3127 DBW (3127 - 3000) * 2 DB2.DBW254

1324 4900 DBW (4900 - 3000) * 2 DB2.DBW3800

1388 5000 DBW (5000 - 5000) * 4 DB3.DBD0

13E2 5090 DBW (5090 - 5000) * 4 DB3.DBD360

1BBC 7100 DBW (7100 - 7000) * 4 DB4.DBD400

26AC 9900 DBW (9900 - 7000) * 4 DB4.DBD7600

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-16

9.5 Function Code 04 – Read Input Registers

Function This function enables the Modbus master system to read data words from a data
block.

Request Message

ADDR FUNC start_register number of registers LRC

Reply Message

ADDR FUNC byte_count n n/2-register DATA (high, low) LRC

Start_Register The Modbus Register Address “start_register” is interpreted by the driver as
follows:

Modbus Register Number (start_register)

15 9 8 7 0 Bit

start-register offset_DB_No. start_register word No.

For further address generation, the driver uses the “Base DB number”
(commence at DB yyyyy) entered in the dialog box “Conversion of Modbus
Addressing for FC 04.”

The address calculation for access (address conversion) is carried out in two
steps as follows:

Access to SIMATIC Conversion Formula

Data block DB (resulting DB) = (Base DB number yyyyy +
 start_register offset_DB_No.)

Data word DBW = (start_register word_No. * 2)

Calculation
Formula for
start_register

If you want to access SIMATIC memory beginning at a particular DBx,DBWy , the
Modbus address start_register required in the master system can be calculated
in accordance with the following formula:

start_register = ((x – Base DB number) * 512) + (y / 2)

This assumes that y is even and is <= 1022. It also assumes that (x – Base DB
number) is not negative and from 0 to 127.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-17

Number of
registers

Any value from 1 to 125 is possible as the number of registers. to be read.
However, you must follow this rule to avoid errors due to rolling to the next DB:

(register_number)max = 512 – (start_register word No.)

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 04

Modbus address in
transmission message

SIMATIC memory area

0 Commencing at data block
(base DB number)

DB 800

Request Message FUNCTION 04:

05H Slave Address ADDR
04H Function Code FUNC
02H start_register “High”
C0H start_register “Low”
00H number of registers “High”
03H number of registers “Low”
xxH LRC

Reply Message FUNCTION 04:

05H Slave Address
04H Function Code
06H Byte Counter
A1H <DATA 1> DBW 384 “High”
A2H <DATA 2> DBW 384 “Low”
A3H <DATA 3> DBW 385 “High”
A4H <DATA 4> DBW 385 “Low”
A5H <DATA 5> DBW 386 “High”
A6H <DATA 6> DBW 386 “Low”
xxH LRC

Address Calculation:
The Modbus address “start_register” 02C0 Hex (704 decimal) is interpreted as
follows:

Modbus Register Number (start_register) = 0050H

15 9 8 7 0 Bit

start_register-Offset_DB_No. =
01H (1 decimal)

start_register-word_No. =
00C0H (192 decimal)

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-18

Data block DB
(resulting DB)

= (base DB Number yyyyy +
 Start_register-Offset_DB_No.)
= (900 + 1
= 901

Data word DBW = (start_register word_No. * 2)

= (192 * 2)
= 384

Access is made to DB 901, data word DBW 384.

Amount of Registers:

The amount of Modbus registers “number of registers” 0003 Hex (3 decimal)
means 3 registers = 3 data words are read.

Further Examples Some other access example is listed in the table below.

 Start_register

Start register Base
DB No

Offset
DB_No

Word Number Resulting
DB

DBW

HEX dec. dec. dec. HEX dec. decimal dec.

0000 0 900 0 000 0 900 0

0064 100 900 0 064 100 900 200

00C8 200 900 0 0C8 200 900 400

0190 400 900 0 190 400 900 800

1400 5120 900 10 000 0 900 0

1464 5220 900 10 064 100 910 200

14C8 5320 900 10 0C8 200 910 400

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-19

9.6 Function Code 05 – Write Single Coil

Function This function enables the Modbus master system to write a bit into the SIMATIC
memory areas of the CPU as listed below.

Request Message

ADDR FUNC coil_address DATA on/off LRC

Reply Message

ADDR FUNC coil_address DATA on/off LRC

coil_address The Modbus bit address “coil_address” is interpreted by the driver as follows:
The driver checks whether “coil_address” is located within one of these areas,
which was entered during parameter assignment in the dialog box “Conversion
of Modbus Addressing for FC 01, 05, 15” (from / to : memory bits, outputs, data
block bits).

If Modbus bit address coil address
is located in area

Access is made to the following
SIMATIC memory area

from aaaaa to bbbbb commence at
memory bit

M uuuuu.0

from ccccc to ddddd commence at
output

Q ooooo.0

from eeeee to fffff commence at
data block bit

DBiiiiii.DBX0.0

The address calculation for access (address conversion) is carried out as follows:

Access beginning
with SIMATIC

Conversion formula

Memory byte = ((coil_address - aaaaa) / 8) + uuuuu

Output byte = ((coil_address - ccccc) / 8) + ooooo

Data block byte = ((coil_address - eeeee) / 8)

Access to “Memory bits”, “Outputs” and “Data Block Bits”

The above table determines the byte index into the addressed SIMATIC data
area. For this, ignore the remainder from the division operations. The bit offset is
also needed. It is simply the remainder from the above division operations.

DATA on/off The following two values are permitted as DATA on/off:

FF00H set bit to logical 1.

0000H reset bit to logical 0.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-20

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 01, 05, 15

Modbus address in
transmission message

SIMATIC memory area

from 0 to 2047 commence at memory bit M 1000.0

from 2048 to 2559 commence at output Q 256.0

from 4096 to 4607 commence at data block bit DB111.DBX0.0

Request Message FUNCTION 05:

05H Slave Address ADDR
05H Function Code FUNC
08H coil_address “High”
09H coil_address “Low” Q257.1
FFH DATA on/off “High”
00H DATA on/off “Low”
xxH LRC

Reply Message FUNCTION 05:

05H Slave Address ADDR
05H Function Code FUNC
08H coil_address “High”
09H coil_address “Low” Q257.1
FFH DATA on/off “High”
00H DATA on/off “Low”
xxH LRC

Address Calculation:
The Modbus address “coil_address” 0809 Hex (2057 decimal) is located in the
area “outputs”:

Output byte = ((coil_address - ccccc) / 8) + ooooo

 = ((2057 - 2048) / 8) + 256

 = 257

The remainder from the above division determines the Bit_Number:

Bit_Number. = ((coil_address - ccccc) % 8) (Modulo 8)

 = ((2057 - 2048) % 8)

 = 1

Access is made to output Q 257.1.

Further Examples For further access examples to memory bits and outputs, please refer to section
9.1.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-21

9.7 Function Code 06 – Write Single Register in Standard Mode

Function This function enables the Modbus master system to write a data word in a data
block of the CPU.

Request Message

ADDR FUNC start_register DATA-value (High, Low) LRC

Reply Message

ADDR FUNC start_register DATA-value (High, Low) LRC

start_register The Modbus register address “start_register” is interpreted by the driver as
follows:

Modbus Register Number (start_register)

15 9 8 7 0 Bit

start-register offset_DB_No. start_register word No.

For further address generation, the driver uses the “Base DB number” (from
DB xxxxx) entered in the dialog box “Conversion of Modbus Addressing for
FC 03, 06, 16” during parameter assignment.

The address calculation for access (address conversion) is carried out in two
steps as follows:

Access to SIMATIC Conversion Formula

Data block DB (resulting DB) = (Base DB number xxxxx +
 start_register offset_DB_No.)

Data word DBW = (start_register word_No. * 2)

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-22

Calculation
Formula for
start_register

 If you want to write SIMATIC memory at a particular DBx,DBWy, the Modbus
address start_register required in the master system can be calculated in
accordance with the following formula:

start_register = ((x – base DB number) * 512) + (y/ 2)

This assumes that y is even and is <= 1022. It also assumes that (x – Base DB
number) is not negative and from 0 to 127

DATA Value Any value can be used as the DATA-value (register value).

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 03, 06,16

Modbus address in
transmission message

SIMATIC memory area

0 Commencing at data block
(base DB number)

DB 800

Request Message FUNCTION 06:

05H Slave Address ADDR
06H Function Code FUNC
01H start_register “High”
80H start_register “Low” DBW 768
2BH DATA Value “High”
1AH DATA Value “Low”
xxH LRC

Reply Message FUNCTION 06:

05H Slave Address ADDR
06H Function Code FUNC
01H start_register “High”
80H start_register “Low” DBW 768
2BH DATA Value “High”
1AH DATA Value “Low”
xxH LRC

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-23

Address Calculation:
The Modbus address “start_register” 0180 Hex (384 decimal) is interpreted:

Modbus Register Number (start_register)

15 9 8 7 0 Bit

start-register offset_DB_No.
= 00 Hex (0 decimal)

start_register word No.
= 180 Hex (384 decimal)

Data block DB
(resulting DB)

= (base DB Number xxxxx +
 Start_register-Offset_DB_No.)
= (800 + 0
= 800

Data word DBW = (start_register word_No. * 2)

= (384 * 2)
= 768

Access is made to DB 800, data word DBW 768.

Further Examples For further access examples please, refer to FC 03.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-24

9.8 Function Code 06 – Write Single Register in Mode “with 32-Bit Register”

General In mode “with 32-Bit Register” a 16-bit register as well as a 32-bit register can be
read. The address calculation in this mode is different than standard mode.

Function This function enables the Modbus master system to write a register mapped to a
data block of the CPU. The register can contain a 16-bit value as well as a 32-bit
value.

Message Structure
for 16-Bit Values

When writing a 16-Bit register the structure for Request and Reply message is
as follows:

Request Message:

ADDR FUNC start_register DATA-value (High, Low) LRC

Reply Message:

ADDR FUNC start_register DATA-value (High, Low) LRC

Message Structure
for 32-Bit Values

When writing a 32-Bit register the structure for Request and Reply message is
as follows:

Request Message:

ADDR FUNC start_register DATA-value (byte 1…4) LRC

Reply Message:

ADDR FUNC start_register DATA-value (byte 1…4) LRC

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-25

start_register The Modbus register address “start_register” is interpreted by the driver as
follows:

The driver checks that “start_register” is located within one of the areas which
were specified during parameter assignment in the dialog box “Conversion of
Modbus Addressing for FC 03, 06, 16” (from / to : 16-bit integer, 32-bit integer,
32-bit float).

If Modbus register address start address
is located in area

Access is made to the following
SIMATIC memory area

16-bit integer from xxaaa to xxbbb commence at
data block

DBxxkkk.DBW0

32-bit integer from xxccc to xxddd commence at
data block

DBxxlll.DBD0

32-bit float from xxeee to xxfff commence at
data block

DBxxnnn.DBD0

The address calculation for access (address conversion) is carried out as follows:

Register type Access to SIMATIC Conversion Formula

Data block DB fixed number DBxxkkk 16-bit integer

Data word DBW = (start_register – xxaaa) * 2

Data block DB fixed number DBxxlll 32-bit integer

Data word DBW = (start_register – xxccc) * 4

Data block DB fixed number DBxxnnn 32-bit float

Data word DBW = (start_register – xxeee) * 4

DATA Value Any value can be used as the DATA-value (register value).

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 03, 06,16

Modbus address in
transmission message

SIMATIC memory area

16-bit integer

from 3000 to 4999 commence at data block DB2.DBW0

32-bit integer

from 5000 to 5099 commence at data block DB3.DBW0

32-bit float

from 7000 to 9999 commence at data block DB4.DBW0

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-26

16-Bit Area Accessed

32-Bit Area Accessed

Request Message FUNCTION 06:

05H Slave Address ADDR
06H Function Code FUNC
0DH start_register “High”
37H start_register “Low” DBW 768
2BH DATA Value “High”
1AH DATA Value “Low”
xxH LRC

Request Message FUNCTION 06:

05H Slave Address ADDR
06H Function Code FUNC
1BH start_register “High”
5AH start_register “Low” DBW 8
12H DATA Value “Byte 1”
23H DATA Value “Byte 2”
34H DATA Value “Byte 3”
45H DATA Value “Byte 4”
xxH LRC

Reply Message FUNCTION 06:

05H Slave Address ADDR
06H Function Code FUNC
0DH start_register “High”
37H start_register “Low” DBW 768
2BH DATA Value “High”
1AH DATA Value “Low”
xxH LRC

Reply Message FUNCTION 06:

05H Slave Address ADDR
06H Function Code FUNC
1BH start_register “High”
5AH start_register “Low” DBW 8
12H DATA Value “Byte 1”
23H DATA Value “Byte 2”
34H DATA Value “Byte 3”
45H DATA Value “Byte 4”
xxH LRC

Address Calculation when 16-bit area is accessed:

The Modbus master system wants to write value 2B1A Hex. The Modbus
address “start_register” 0D37 Hex (3383 decimal) is located in the area “16-bit
integer” and is interpreted as follows:

Data block DB = fixed number xxkkk

= 2

Data word DBW = (start_register - xxaaa) * 2

 = (3383 - 3000) * 2

 = 766

Write access is made to DB2.DBW766.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-27

Calculation
Formula for
start_register (16-
bit)

If you want to write SIMATIC memory at a particular DBxxkkk,DBDy, the Modbus
address start_register required in the master system can be calculated in
accordance with the following formula:

start_register = (y/2) + xxaaa, where xxkkk is the DB for 16-bit

integer range and start_register <= xxbbb

The value xxaaa to xxbbb are the parameters defining the Modbus registers for
the 16-bit integer range.

Address Calculation: when 32-bit area is accessed:

The Modbus master system wants to write value 12233445 Hex.The Modbus
address “start_register” 1B5A Hex (7002 decimal) is located in the area “32-
bit float” and is interpreted as follows:

Data block DB = fixed number xxnnn

= 4

Data word DBW = (start_register - xxaaa) * 4

 = (7002 - 7000) * 4

 = 8

Write access is made to DB4.DBD8.

Formula for
start_register (32-
bit)

If you want to write SIMATIC memory at a particular DBxxlll,DBDy or
DBxxnnn,DBDy the Modbus address start_register required in the master
system can be calculated in accordance with the following formula:

start_register = (y/4) + xxccc, where xxlll is the DB for 32-bit

integer range and start_register <= xxddd

start_register = (y/4) + cceee, where xxnnn is the DB for 32-bit
float range and start_register <=xxfff

The values xxccc to xxddd and xxeee to xxfff are the parameters defining the
Modbus registers for the 32-bit integer and float ranges respectively.

Further Examples For further access examples please, refer to section 9.4.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-28

9.9 Function Code 08 - Diagnostics

Function This function serves to check the communications connection.

It does not affect the S7 CPU, nor the user programs, nor user data. The
received message is just echoed back to the master system by the
driver.

Request Message

ADDR FUNC Sub-function Code (High, Low) Test Data LRC

Reply Message

ADDR FUNC Sub-function Code (High, Low) Test Data LRC

Diagnostic Code Only Diagnostic Code 0000, “Return Query Data”, is supported.

Test Data Any value (16 bit).

Application
Example

Request Message FUNCTION 08:

05H Slave Address ADDR
08H Function Code FUNC
00H Sub-function Code “High”
00H Sub-function Code “Low”
A5H Test Value “High”
C3H Test Value “Low”
xxH LRC

Reply Message FUNCTION 08:

05H Slave Address ADDR
08H Function Code FUNC
00H Sub-function Code “High”
00H Sub-function Code “Low”
A5H Test Value “High”
C3H Test Value “Low”
xxH LRC

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-29

9.10 Function Code 15 – Write Multiple Coils

Function This function enables the Modbus master system to write several contiguously
addressed bits in the SIMATIC memory areas listed below.

Request Message

ADDR FUNC start_address quantity byte_count n DATA LRC

Reply Message

ADDR FUNC start_address quantity LRC

start_address The starting Modbus coil address “start_address” is interpreted by the driver as
follows:

The driver checks if “start_address” is located within one of the areas which were
entered in the dialog box “Conversion of Modbus Addressing for FC 01, 05,
15” during parameter assignment (from / to : memory bits, outputs, data block
bits).

If Modbus bit address start_address is
located in area

Access is made to the following
SIMATIC memory area

from aaaaa to bbbbb commence at
memory bit

M uuuuu.0

from ccccc to ddddd commence at
output

Q ooooo.0

from eeeee to fffff commence at
data block bit

DBiiiiii.DBX0.0

The address calculation for access (address conversion) is carried out as follows:

Access beginning
with SIMATIC

Conversion formula

Memory byte = ((start_address - aaaaa) / 8) + uuuuu

Output byte = ((start_address - ccccc) / 8) + ooooo

Data block byte = ((start_address - eeeee) / 8)

Access to “Memory bits”, “Outputs” and “Data Block Bits”

The above table determines the byte index into the addressed SIMATIC data
area. For this, ignore the remainder from the division operations. The bit offset is
also needed. It is simply the remainder from the above division operations.

Quantity Any value between 1 and 1976 is permitted as the quantity (amount of bits).

Note:
Please note the CPU-specific limitations as described in the section “CPU-CP
Interface.”

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-30

DATA Bit status (any values) is contained in the DATA field.

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 01, 05, 15

Modbus address in
transmission message

SIMATIC memory area

From 0 to 2047 commence at memory bit M 1000.0

From 2048 to 2559 commence at output Q 256.0

From 4096 to 4607 commence at data block bit DB111.DBX0.0

Action:

The Modbus master system wants to write 12 coil values to SIMATIC memory bits
M 1144.1 ... M 1144.7 and M 1145.0 ... M 1145.4:

Memory bit 7 6 5 4 3 2 1 0

M 1144 ON OFF OFF ON ON OFF ON -

Bit

Memory bit 7 6 5 4 3 2 1 0

M 1145 - - - ON OFF OFF ON ON

Bit

Request Message FUNCTION 15:

05H Slave Address ADDR
0FH Function Code FUNC
04H start_address “High”
81H start_address “Low”
00H Quantity “High”
0CH Quantity “Low”
02H byte_count
CDH Status coil (M1145.0, M 1144.7 … M 1144.1)
09H Status coil (M 1145.4 … M 1145.0)
xxH LRC

Reply Message FUNCTION 15:

05H Slave Address ADDR
0FH Function Code FUNC
04H start_address “High”
81H start_address “Low”
00H Quantity “High”
0CH Quantity “Low”
xxH LRC

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-31

Address Calculation:

The Modbus coil “start_address” 0481 Hex (1153 decimal) is located in the
“memory bit” area:

Memory byte = ((start_address - aaaaa) / 8) + uuuuu

 = ((1153 - 0) / 8) + 1000

 = 1144

The remainder from the above division determines the Bit_Number:

Bit_Number = ((start_address - aaaaa) % 8) (Modulo 8)

 = ((1153 - 0) % 8)

 = 1

Write access is made to memory bits starting at M 1144.1 and extending to M
1145.4. Only these bits are affected.

Further Examples For further access examples to memory bits, outputs and data block bits, please
refer to section 9.1.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-32

9.11 Function Code 16 – Write Multiple Registers in Standard Mode

Function This function code enables the Modbus master system to write several data
words in a data block of the SIMATIC CPU.

Request Message

ADDR FUNC start_register quantity byte-count n DATA (high, low) LRC

Reply Message

ADDR FUNC start_register quantity LRC

start_register The Modbus register address “start_register” is interpreted by the driver as

follows:

Modbus Register Number (start_register)

15 9 8 7 0 Bit

start-register offset_DB_No. start_register word No.

For further address generation, the driver uses the “Base DB number” (from DB
xxxxx) entered in the dialog box “Conversion of Modbus Addressing for FC 03,
06, 16” during parameter assignment.

The address calculation for access (address conversion) is carried out in two
steps as follows:

Access to SIMATIC Conversion Formula

Data block DB (resulting DB) = (Base DB number xxxxx +
 start_register offset_DB_No.)

Data word DBW = (start_register word_No. * 2)

Calculation
Formula for
start_register

If you want to write SIMATIC memory beginning at a particular DBx,DBWy, the
Modbus address start_register required in the master system can be calculated
in accordance with the following formula:

start_register = ((x – base DB number) * 512) + (y/ 2)

This assumes that y is even and is <= 1022. It also assumes that (x – Base DB
number) is not negative and from 0 to 127.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-33

Quantity A value between 1 and 123 is possible as the quantity of registers to be written.
However, you must follow this rule to avoid errors due to rolling to the next DB:

(quantity of registers)max = 512 – (start_register word No)

Note:
Please note the CPU-specific limitations as described in the section “CPU-CP
Interface.”

DATA (High, Low) Any value can be used in the DATA (High, Low) (register values).

Application
Example

Example for Parameter Assignment:

Conversion of Modbus Addressing for Function Codes FC 03, 06,16

Modbus address in
transmission message

SIMATIC memory area

0 Commencing at data block
(base DB number)

DB 800

Action:

The Modbus master system wants to write values CD09 Hex, DE1A Hex,
EF2B Hex to data words DBW 100, DBW 102, and DBW 104 of DB 805.

Request Message FUNCTION 16:

05H Slave Address ADDR
10H Function Code FUNC
0AH start_register “High” offset DB No = 5 (DB 805)
32H start_register “Low” word No = 50 (DBW 100)
00H Quantity “High”
03H Quantity “Low” (3 registers)
06H bytecount
CDH Register Value –High (DBW 100)
09H Register Value –Low
DEH Register Value –High (DBW 102)
1AH Register Value –Low
EFH Register Value –High (DBW 104)
2BH Register Value –Low
xxH LRC

Reply Message FUNCTION 16:

05H Slave Address ADDR
10H Function Code FUNC
0AH start_register “High”
32H start_register “Low”
00H Quantity “High”
03H Quantity “Low” (3 registers)
xxH LRC

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-34

Address Calculation:

The Modbus Address “start_register” 0A32 Hex is interpreted as follows:

Modbus Register Number (start_register)

15 9 8 7 0 Bit

start-register offset_DB_No.
= 05 Hex (5 decimal)

start_register word No.
= 32 Hex (50 decimal)

Data block DB
(resulting DB)

= (Base DB Number xxxxx +
 Start_register-Offset_DB_No.)
= (800 + 5)
= 805

Data word DBW = (start_register word_No. * 2)

= (50 * 2)
= 100

Write access is made to DB 805, data words DBW 100 to DBW 104.

Further Examples For further access examples, please refer to section 9.3.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-35

9.12 Function Code 16 – Write Multiple Registers in Mode “with 32-Bit Register”

General In mode “with 32-Bit Register” 16-bit registers as well as 32-bit registers can be
written. The address calculation in this mode is different than standard mode.

Function This function code enables the Modbus master system to write registers mapped
to a data block of the SIMATIC CPU. The registers can contain a 16-bit value as
well as a 32-bit value.

Request Message Depending on the requested address start_register, whether it belongs to 16-
bit or 32-bit memory area, the request message has a different form.

Request message when 16-bit values are transferred:

ADDR FUNC start_register quantity byte-count n n/2 DATA (high, low) LRC

Request message when 32-bit values are transferred:

ADDR FUNC start_register quantity byte-count n n/2 DATA (byte 1…4) LRC

Reply Message

ADDR FUNC start_register quantity LRC

start_register The Modbus register address “start_register” is interpreted by the driver as
follows:

The driver checks that “start_register” is located within one of the areas which
were specified during parameter assignment in the dialog box “Conversion of
Modbus Addressing for FC 03, 06, 16” (from / to : 16-bit integer, 32-bit integer,
32-bit float).

If Modbus register address start address
is located in area

Access is made to the following
SIMATIC memory area

16-bit integer from xxaaa to xxbbb commence at
data block

DBxxkkk.DBW0

32-bit integer from xxccc to xxddd commence at
data block

DBxxlll.DBD0

32-bit float from xxeee to xxfff commence at
data block

DBxxnnn.DBD0

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-36

The address calculation for access (address conversion) is carried out as follows:

Register type Access to SIMATIC Conversion Formula

Data block DB fixed number DBxxkkk 16-bit integer

Data word DBW = (start_register – xxaaa) * 2

Data block DB fixed number DBxxlll 32-bit integer

Data word DBW = (start_register – xxccc) * 4

Data block DB fixed number DBxxnnn 32-bit float

Data word DBW = (start_register – xxeee) * 4

Quantity The maximum register number depends on the accessed data area. If the 16-bit
area is accessed, values from 1 to 123 are permitted as the quantity (number of
registers to write).

When accessing a 32-bit area, quantity (the number of registers to write) is
limited from 1 to 61.

The number of registers (16 or 32 bit) set in quantity is written.

DATA Any value can be used as DATA (register value).

Application
Example

Conversion of Modbus Addressing for Function Codes FC 03, 06,16

Modbus address in
transmission message

SIMATIC memory area

16-bit integer

from 3000 to 4999 commence at data block DB2.DBW0

32-bit integer

from 5000 to 5099 commence at data block DB3.DBW0

32-bit float

from 7000 to 9999 commence at data block DB4.DBW0

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-37

16-Bit Area Accessed

32-Bit Area Accessed

Request Message FUNCTION 16:

05H Slave Address ADDR
10H Function Code FUNC
0CH start_register “High”
1CH start_register “Low” DBW 200
00H Quantity “High”
03H Quantity “Low” (3 registers)
06H bytecount
CDH Register Value –High (DBW 200)
09H Register Value –Low
DEH Register Value –High (DBW 202)
1AH Register Value –Low
EFH Register Value –High (DBW 204)
2BH Register Value –Low
xxH LRC

Request Message FUNCTION 16:

05H Slave Address ADDR
10H Function Code FUNC
13H start_register “High”
8BH start_register “Low” DBD 12
00H Quantity “High”
03H Quantity “Low” (2 registers)
08H bytecount
3AH Reg. Value – Byte 1 (DBD12)
09H Reg. Value – Byte 2
DEH Reg. Value – Byte 3
1AH Reg. Value – Byte 4
01H Reg. Value – Byte 1 (DBD16)
02H Reg. Value – Byte 2
03H Reg. Value – Byte 3
04H Reg. Value – Byte 4
xxH LRC

Reply Message FUNCTION 16:

05H Slave Address ADDR
10H Function Code FUNC
0CH start_register “High”
1CH start_register “Low”
00H Quantity “High”
03H Quantity “Low” (3 registers)
xxH LRC

Reply Message FUNCTION 16:

05H Slave Address ADDR
10H Function Code FUNC
13H start_register “High”
8BH start_register “Low”
00H Quantity “High”
02H Quantity “Low” (2 registers)
xxH LRC

Address Calculation when 16-bit area is accessed:

The Modbus master system wants to write values CD09 Hex, DE1A Hex, EF2B
Hex. The Modbus address “start_register” 0C1C Hex (3100 decimal) is located in
the area “16-bit integer” and is interpreted as follows:

Data block DB = fixed number xxkkk

= 2

Data word DBW = (start_register - xxaaa) * 2

 = (3100 - 3000) * 2

 = 200

Write access is made to DB2.DBW200, DBW202 and DBW204.

Function Codes

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

9-38

Calculation
Formula for
start_register (16-
bit)

If you want to write SIMATIC memory beginning at a particular DBxxkkk,DBDy,
the Modbus address start_register required in the master system can be
calculated in accordance with the following formula:

start_register = (y/2) + xxaaa, where xxkkk is the DB for 16-bit

integer range and start_register <= xxbbb

The value xxaaa to xxbbb is the parameter defining the Modbus registers for the
16-bit integer range.

Address Calculation: when 32-bit area is accessed:

The Modbus master system wants to write values 3A09DE1A Hex, 01020304
Hex.The Modbus address “start_register” 138B Hex (5003 decimal) is located in
the area “32-bit integer” and is interpreted as follows:

Data block DB = fixed number xxnnn

= 3

Data word DBW = (start_register - xxaaa) * 4

 = (5003 - 5000) * 4

 = 12

Write access is made to DB3.DBD12 and DBD 16.

Formula for
start_register (32-
bit)

If you want to write SIMATIC memory beginning at a particular DBxxlll,DBDy or
DBxxnnn.DBDy, the Modbus address start_register required in the master
system can be calculated in accordance with the following formula:

start_register = (y/4) + xxccc, where xxlll is the DB for 32-bit

integer range and start_register <= xxddd

start_register = (y/4) + xxeee, where xxnnn is the DB for 32-bit
float range and start_register <=xxfff

The values xxccc to xxddddd and xxeee to xxfff are the parameters defining the
Modbus registers for the 32-bit integer and float ranges respectively.

Further Examples For further access examples, please refer to section 9.4.

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-1

10 Diagnostics of the Driver

Diagnostics
Functions

The diagnostics functions of the CP enable you to easily know when an error has
occurred and quickly determine the cause of the problem. The following
diagnostic facilities are available:

• Diagnostics via display elements of the CP

• Diagnostics via the STATUS output of the function blocks

• Diagnostic buffer of the CP

Display Elements
(LED)

The display elements provide information on the operating status and/or a
possible error status of the CP. The display elements give a first overview of
internal or external errors, as well as interface-specific errors.

STATUS Output of
FBs / SFBs

Each function block / system function block has a STATUS output for error
diagnostics purposes. Reading this STATUS output enables the user to obtain
information on errors which occurred during communication. The STATUS
parameter can be evaluated in the user program.

Diagnostic Buffer
of the CP

All errors / events described in Section 10.3 are also entered in the diagnostic
buffer of the CP. The manual for the CP describes how you can read the
diagnostic buffer.

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-2

10.1 Diagnostics via Display Elements (LEDs)

Introduction The display LEDs of the CP 341 provide general operational information. The
following different display functions are available:

• Group Error Displays

 - SF (red) Error occurred or new parameters assigned

• Special Displays

 - TXD (green) Send active; lights up when the CP 341 sends user data
 via the interface
 - RXD (green) Receive active; lights up when the CP 341 receives user
 data via the interface

Group Error
Display SF

The group error display SF always lights up after power-on and goes out after
initialization is complete. If parameter assignment data were created for the CP
341, the SF LED lights up again briefly when new parameters are loaded.

The group error display SF lights up, when the following errors have occurred:

• Hardware error

• Firmware error

• Parameter assignment error

• BREAK (Receiving line between CP 341 and communication partner is
interrupted or CTS or DSR signals not asserted at the connector.)

10.2 Diagnostic Messages of the Function Blocks of the CP 341

Introduction Each function block has a STATUS parameter for error diagnostics purposes.
Each STATUS message number has the same meaning, independent of the
system function block used.

Event Class /
Event Number
Numbering
Scheme

The following figure shows the structure of the STATUS parameter.

Bit-No. 15 13 12 8 7 0

 Reserve Event Class Event Number
(Error Number)

The individual errors / events are listed in Section 10.3

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-3

10.3 Table of Errors / Events

Event Classes The following event classes are defined:

Event Class Description Described in

1 Hardware error on CP CP Manual

2 Error during initialization CP Manual

3 Error during parameter assignment of
PBK

CP Manual

4 Errors in CP – CPU data traffic
recognized by CP

CP Manual

5 Error during processing of a CPU job CP Manual,
Driver Manual

6 Error during processing of a partner job CP Manual

7 Send error CP Manual

8 Receive error Driver Manual

9 Error code message received from link
partner

Not used

10 Errors recognized by CP in reaction
message from partner

Not used

14 General processing errors of the
loadable driver

Driver Manual

10.3.1 Error Codes for “CPU Job Errors”

Event Class 5 (05H)
“CPU Job Errors”

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

05 18H 24 Transmission length during transmission is
too large (> 4 Kbytes), or transmission length
for SEND is too small. (Note: Modbus ASCII
driver should limit transmission to 512 bytes.)

Check communications FB, possibly
reload

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-4

10.3.2 Error Codes for “Receive Errors”

Event Class 8 (08H)
“CPU Receive Errors”

Event
Class /
No.(Hex)

Event
Number
(decimal)

Event Text Remedy

08 06H 6 Character delay time exceeded Eliminate error in partner device or
interference on the transmission
line or increase the value of the
“Character Delay Time” parameter.

08 0CH 12 Transmission error (parity error, overflow
error, stop bit error (frame)) recognized in a
character

Check for interference which could
influence the transmission line.
If required, change system
structure and/or cable routing.
Check whether the protocol
parameters transmission rate
amount of stop bits have the same
settings for the CP and the link
partner.

08 0DH 13 BREAK
Receiving line to partner device is
interrupted.

Establish connection between the
devices or switch on partner
device.
Make sure CTS and DSR are
asserted at the CP connector.
For use with TTY operation check
line current at idle state.
For use with an RS422/485 (X27)
connection check and, if required,
change the connector pin
assignment of the 2-wire receiving
line R(A), R(B).

08 16H 22 The length of a receive message was longer
then the receive buffer of the CP. The PDU
size can be up to 512 byte.

Check for interference which could
influence the transmission line.

08 18H DSR = OFF or CTS = OFF The partner has switched the DSR
or CTS signal to ”OFF” before or
during a transmission.
Check the partner’s control of the
RS 232C secondary signals.

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-5

Event Class 8 (08H)
“Receive Errors”

Event
Class /
No.(Hex)

Event
Number
(decimal)

Event Text Remedy

08 30H 48 Broadcast not allowed with this function code. The Modbus master system is
allowed to use Broadcast only for
the function codes enabled for this
purpose.

08 31H 49 Received function code not allowed. This function code cannot be used
for this driver.

08 32H 50 Maximum amount of bits or registers
exceeded.
Maximum values:
bit read: 2008, bit write: 1976,
16-bit register read: 125, write: 123
32-bit registers read: 62, write: 61

Limit maximum amount with
request of the master.

08 33H 51 Amount of bits or registers for function codes
FC 15/16 and message element byte_count
do not match.

Correct amount of bits / registers
or byte_count.

08 34H 52 Illegal bit coding recognized for “set bit / reset
bit.”

Only use codings 0000 Hex or
FF00 Hex for FC05.

08 35H 53 Illegal diagnostic subcode (!= 0000 Hex)
recognized for function code FC 08 “Loop
Back Test.”

Only use subcode 0000 Hex for
FC08.

08 36H 54 LRC incorrect:
An error has occurred on checking the LRC of
the request message from the master.

Check LRC generation at Modbus
master system.

08 37H 55 Message sequence error:
The Modbus master system sent a new
request message before the last reply
message was transferred by the driver.

Increase the timeout to the slave
reply message for the Modbus
master system.

08 38H 56 A wrong start character was received. The
start character was not a colon (3AH).

Check protocol settings for the
slave.

08 39H 57 A start character was received within a
telegram.
The first part of the telegram is discarded and
reception starts again with the second start
character.

Check if transmission line is
interrupted (interface analyzer
may be required).

08 3AH 58 A received character within the reply message
is not an ASCII character (0-9, A-F)

Check slave device.
Make sure it is in ASCII mode and
not RTU.

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-6

10.3.3 Error Codes in SYSTAT for “General Processing Errors”

Event Class 14 (0EH)
“Loadable Driver – General Processing Errors”

Event
Class /
No.(Hex)

Event
Number
(decimal)

Event Text Remedy

0E 01H 1 Error during initialization of the driver-specific
SCC process

Reassign parameters of driver
and reload.

0E 02H 2 Error during startup of driver:
Wrong SCC process active (SCC driver). The
driver cannot function with this SCC driver.

Reassign parameters of driver
and reload.

0E 03H 3 Error during startup of driver:
Wrong data transfer process active (interface
to SFBs). The driver cannot function with this
data transfer process.

Reassign parameters of driver
and reload.

0E 04H 4 Error during startup of driver:
Illegal interface submodule. The driver cannot
run with the parameterized interface
submodule.

Check and correct parameter
assignment.

0E 05H 5 Error with driver dongle:
No dongle plugged in, or inserted dongle is
faulty. The driver is not ready to run.

Check if a driver dongle is
plugged into the CP. If the
inserted dongle is faulty, replace it
with a correct dongle.

0E 06H 6 Error with driver dongle:
The dongle has no valid contents. The driver is
not ready to run.

Obtain a correct dongle from the
Siemens office which supplied
you with the driver.

… … … …

0E 10H 16 Internal error procedure:
default branch in Send automatic device.

Restart CP (Mains_ON)

0E 11H 17 Internal error procedure:
default branch in Receive automatic device.

Restart CP (Mains_ON)

0E 12H 18 Internal error active automatic device:
default branch.

Restart CP (Mains_ON)

0E 13H 19 Internal error passive automatic device:
default branch.

Restart CP (Mains_ON)

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-7

Event Class 14 (0EH)
“Loadable Driver – General Processing Errors <Parameter Assignment>“

Event
Class /
No.(Hex)

Event
Number
(decimal)

Event Text Remedy

0E 20H 32 For this data link the amount of data bits must be
set to 7.
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 21H 33 The Character Delay Time parameter is not within
the range of 1 to 6500 milliseconds.
The driver is operating with a default value of 1000
milliseconds

Correct parameter
assignment of the driver.
Load driver parameters.

0E 22H 34 The operating mode set for the driver is illegal.
“Normal” or “Interference Suppression” must be
specified.
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 23H 35 An illegal value has been set for the slave address.
Slave address 0 is not allowed.
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 24H 36 Illegal limitations have been set for write access.
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 25H 37 An illegal “from/to” combination has been set for the
input of areas “Conversion of Modbus Addressing
for FC 01,05,15.” (Areas memory bits, outputs, data
bits), or the selected DB number is 0.
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 26H 38 An illegal “from/to” combination has been set for the
input of areas “Conversion of Modbus Addressing
for FC 02.” (Areas memory bits, inputs, data bits),
or the selected DB number is 0..
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 27H 39 An overlap has been set for the “from/to”
combination for the input of areas “Conversion of
Modbus Addressing for FC 01,05,15.” (Areas
memory bits, outputs, data bits).
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 28H 40 An overlap has been set for the “from/to”
combination for the input of areas “Conversion of
Modbus Addressing for FC 02.” (Areas memory
bits, inputs, data bits).
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-8

Event Class 14 (0EH)
“Loadable Driver – General Processing Errors <Parameter Assignment>“

Event
Class /
No.(Hex)

Event
Number
(decimal)

Event Text Remedy

0E 29H 37 An illegal “from/to” combination has been set for the
input of areas “Conversion of Modbus Addressing
for FC 03,06,16.” (Data types INT16, INT32,
FLOAT32), or the selected DB number is 0..
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 2AH 39 An overlap has been set for the “from/to”
combination for the input of areas “Conversion of
Modbus Addressing for FC 03,06,16.” (Areas
memory bits, outputs, data bits).
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 2BH 39 The same DB number was selected for FC1, FC2
and FC3 with 32-bit registers.
Please use different numbers for each FC.
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 2CH 39 The number of registers defined for FC3 with 32-bit
registers is larger than a DB can consist of.
The maximum amount is 16383 32-bit-registers or
32676 16-bit registers.
The driver is not ready to run.

Correct parameter
assignment of the driver.
Load driver parameters.

0E 2EH 46 An error occurred when reading the interface
parameter file.
The driver is not ready to run.

Restart CP (Mains_ON).

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-9

Event Class 14 (0EH)
“Loadable Driver – General Processing Errors <CPU-CP>“

Event
Class /
No.(Hex)

Event
Number
(decimal)

Event Text Remedy

0E 30H 48 Internal error during data transfer to CPU:
Unexpected acknowledgment Passive.

Can be ignored if it happens
intermittently.

0E 31H 49 Timeout during data transfer to CPU. Check CP-CPU interface.

0E 32H 50 Error occurred during data transfer to CPU
with RCV:
Exact failure reason (detailed error) is in
diagnostic buffer before this entry.

Check CP-CPU interface.

0E 33H 51 Internal error during data transfer to CPU:
Illegal status of automatic device.

Check CP-CPU interface.

… … … …

0E 38H 56 Error occurred when accessing one of the
SIMATIC areas “memory bits, outputs, timers,
counters, inputs” with function codes FC 01 or
FC 02:
For example, input does not exist, or read
attempt in excess of range end.

Check if the addressed SIMATIC
area exists and whether an
attempt was made to access in
excess of range end.

0E 39H 57 Error occurred when accessing SIMATIC area
“data block” with function codes FC 03, 04, 06,
16:
Data block does not exist or is too short.

Check if the addressed data block
exists and that it is sufficiently
long.

0E 3AH 58 Error occurred when executing a write job with
function codes FC 05, 15:
Instance data block of Modbus FB does not
exist or is too short.

Check if instance DB
parameterized on the Modbus
communications FB exists and
that it is sufficiently long.

0E 3BH 59 Timeout during execution of a write job by
Modbus communications FB.

Check project configuration of
data link and CP-CPU interface
(SFB SEND): possibly reload
Modbus communications FB.

Diagnostics of the Driver

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

10-10

Event Class 14 (0EH)
“Loadable Driver – General Processing Errors <Receive Evaluation>“

Event
Class /
No.(Hex)

Event
Number
(decimal)

Event Text Remedy

0E 51H 81 The received Modbus address is outside the
parameterized “from/to” areas. (See section
“Assigning Parameters to the Loadable
Driver”).

Only use addresses as the
address specification in the
request message, which have
previously been defined during
parameter assignment.

0E 52H 82 SIMATIC range limitation exceeded during
access attempt by Modbus master system:
Resulting DB number < 1, or
Write access to an area which has not been
enabled (parameter assignment), or write
access to instance DB of the communications
FB.

Limit access range to valid
SIMATIC memory areas.

0E 53H 83 SIMATIC range limitation exceeded during
access attempt by Modbus master system, for
example, overflow when generating the
resulting DB number (> 65535).

Limit access range to valid
SIMATIC memory areas.

0E 54H 84 Access in excess of parameterized range end,
or access in excess of SIMATIC range end.

Limit access range to valid
SIMATIC memory areas.

0E 55H 85 Write access to this SIMATIC memory area is
not allowed.

Carry out write access only to
SIMATIC data areas memory bits,
outputs.

0E 56H 86 Data link operation not possible because
communications FB not running.

Make cyclic call of Modbus
communications FB in STEP 7
user program. If required, re-
initialize communications FB.

0E 57H 87 Error occurred in communications FB during
processing of the Modbus function code.

Analyze exact reason as
described in Section “Diagnostics
of the Communications FB.”

Diagnostics of the Communications FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

11-1

11 Diagnostics of the Communications FB

Diagnostic
Functions

The Modbus communications FB has the following two output parameters,
which indicate occurred errors:

• Parameter “ERROR_NR”

• Parameter “ERROR_INFO”

ERROR_NR,

ERROR_INFO

Occurred errors are indicated at the ERROR_NR output.

Further details on the error in ERROR_NR are displayed at the output
ERROR_INFO.

Deleting the Errors The errors are deleted with a rising edge at CP_START.

The error displays may be deleted by the user at any time, if required.

11.1 Diagnostics via Parameters ERROR_NR, ERROR_INFO

ERROR_No 1...9 Error during Initialization FB and CP

Error numbers 1...9 indicate initialization with error. Parameter
CP_START_ERROR is 1.

Modbus communication to the master system is not possible.

ERROR_No 10...19 Error during Processing of a Function Code

Error numbers 10...19 indicate an error during processing of a function code.
The CP transmitted an illegal processing job to the communications FB.

The error is also reported to the driver.

Subsequent processing jobs continue to be processed.

ERROR_No 90...99 Other Errors

A processing error has occurred.

The error is not reported to the driver.

Subsequent processing jobs continue to be processed.

Diagnostics of the Communications FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

11-2

11.1.1 Errors during “Initialization”

 “Error during Initialization”

ERROR_No
(decimal)

ERROR_INFO Error Text Remedy

0 0 no error

1 SFC51 RET_VAL Error when reading SZL with
SFC51.

Analyze RET_VAL in
ERROR_INFO, eliminate cause.

2 FB8 STATUS Timeout when initializing CP or
error when initializing CP (Error
in SEND job).

Check if protocol “Modbus Slave”
has had parameters assigned on
this interface. Analyze
ERROR_INFO.

11.1.2 Errors during “Processing of Function Codes”

 “Error during Processing of Function Codes”

ERROR_No(
decimal)

ERROR_INFO Error Text Remedy

10 Processing Code Illegal processing function
transferred by the driver to the
communications FB.

Restart CP (Mains_ON)

11 Start Address Illegal start address transferred
by the driver to communications
FB.

Check Modbus address of Modbus
master system.

12 Amount of
Registers

Illegal amount of registers
transferred by the driver to
communications FB:
Amount of registers = 0.

Check amount of registers of
Modbus master system, if required
restart CP (Mains_ON)

13 Amount of
Registers

Illegal amount of registers
transferred by the driver to
communications FB.

Check amount of registers of
Modbus master system, if required
restart CP (Mains_ON)

14 Memory bits M -
End Address

Attempted access to SIMATIC
memory area “memory bits” in
excess of range end.
Attention:
Range length in SIMATIC CPU
is CPU type-dependent.

Reduce Modbus start address
and/or access length in Modbus
master system.

Diagnostics of the Communications FB

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

11-3

“Error during Processing of Function Codes”

ERROR_No
(decimal)

ERROR_INFO Error Text Remedy

15 Outputs Q – End
Address

Attempted access to SIMATIC
memory area “outputs” in excess
of range end.
Attention:
Range length in SIMATIC CPU is
CPU type-dependent.

Reduce Modbus start address
and/or access length in Modbus
master system.

16 SFC24 STATUS Accessed DB does not exist.
Error message of SFB24.

Establish the accessed DB in the
CPU.

17 The accessed DB is too short. Reduce length in Modbus master
system or enlarge DB.

18 0 Illegal SIMATIC memory area
transferred by the driver to
communications FB.

If required, restart CP (Mains_ON)

19 Error during access to SIMATIC
I/Os.

Check if required I/Os exist and
are error-free.

11.1.3 “Other” Errors

“Other Errors”

ERROR_No
(decimal)

ERROR_INFO Error Text Remedy

92 FB7 STATUS Error when executing a
RECEIVE/FETCH call with FB7
(RCV_RK).

Analyze FB7-STATUS

Technical Data

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

A - 1

A Technical Data

Memory
Requirements

The following table displays the memory requirements of the function blocks FB81
of the CP 341 in bytes. The memory requirements of the FBs 7 and 8 can be
found in the manual for the CP 341.

Block Name Version Loading
Memory

Work
Memory

Local
Data

FB 81 MODB_ASCII 1.0 3186 2432 44

Wiring Diagrams Multipoint

B Wiring Diagrams Multipoint

Wiring diagram RS422 multipoint (Modbus ASCII Multipoint)

Caution
The CP cannot switch its SEND line to “Tri State” in 4-wire operation. So in RS422 mode this ASCII Slave
driver cannot be used in multipoint connections. You must use RS485 with the ASCII Slave driver.

In the RS422 mode CP341 can only be used as a Master.

Wiring diagram RS485 multipoint (Modbus Multipoint)

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

B - 1

Wiring Diagrams Multipoint

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

B - 2

The following applies:

• GND (PIN 8 must always be connected on both sides

• The casing shield must be installed everywhere

• A terminating resistor of approx. 330 Ω is to be soldered into the connector on the last receiver
of a node sequence.

• Recommended cable type: LIYCY 3 x 2 x 0,14 R(A)/R(B) and T(A)/T(B) twisted pairs. For

additional information see the “Cables” section of the “Modbus over Serial Line Specification and
Implementation Guide” available at www.modbus.org.

• A wiring with “Stub“ is not allowed

Wiring diagram RS232 Point to Point (Modbus RS232)

Please refer to Section B.1 of the CP 341 Point – to – Point Communication Manual.

Access Cheat Sheet

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

C - 1

C Access Cheat Sheat

Summary of Access Spaces to DB by Function Code Group and Mode

Mode Access FC 03,06,16

Access Holding Registers
FC 01,05,15
Access Coils

FC 04
Read Input Registers

FC 02
Read Discrete
Inputs

Read Map a Start Reg # to a Base DBx.DBW0,
decode Register# as follows:

Register#

Offset to DBx DBW index / 2

7-Bits (0-127) 9-Bits (0-511)

Therefore can read first 512 words in128
contiguous DBs (Sec 3.6.1)

Map Coil Range to
a DBx.DBX0.0
(Sec 3.5)

Map a Start Reg # to a Base DBx.DBW0,
decode Register# as follows:

Register#

Offset to DBx DBW index / 2

7-Bits (0-127) 9-Bits (0-511)

Therefore can read first 512 words in 128
contiguous DBs (Sec 3.6.3)

Map Discrete
Input Range to
a DBx.DBX0.0
(Sec 3.5)

Standard

Write Sub-Range of contiguous DBs in Read
Space. (Sec 3.7)

Same as Read
Space

N/A N/A

Read Map 3 Register Ranges to 3 DBs:
DBx.DBW0 16-bit Int
DBy.DBD0 32-bit Int
DBz.DBD0 32-bit Float (Sec 3.6.2)

Map Coil Range to
a DBx.DBX0.0

Same as for Standard Same as for
Standard

With
32-Bit
Regs

Write Same as Read Space Same as Read
Space

N/A N/A

Access Cheat Sheet

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

C - 2

Summary of Access Spaces to M , Q and I by Function Code Group and Mode

Mode Access FC 01,05,15

Access Coils
FC 02
Read Discrete Inputs

Read Map two Coil ranges to Mx.0 and Qy.0
(Sec 3.5)

Map two Discrete Input Ranges to Mx.0 and and Iy.0
(Sec 3.5)

Standard

Write Sub-range of contiguous M and Q in Read
Space
(Sec 3.7)

N/A

Read Same as for Standard Same as for Standard With 32-Bit
Regs

Write Same as for Standard N/A

Note: In all cases the write access space is a subset of the read space or is shown as N/A when the Function Code group is
itself read-only.

Literature List

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

D - 1

D Literature List

Modbus Protocol Modbus over Serial Line
Specification & Implementation Guide
V1.0
12/02/02

Modbus Application Protocol Specification
V1.1a
6/4/04

http://www.modbus.org

Glossary

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 1

Glossary

A

Address The address identifies a physical storage location and enables the user
to directly access the operand store there.

B

Block Blocks are elements of the user program which are defined by their
function, structure, or purpose. With STEP 7 there are

• Code blocks (FB, FC, OB, SFB, SFC)

• Data blocks (DB, SDB)

• User-defined data types (UDT)

Block Call A block call occurs when program processing branches to the called block

Block Parameter Block parameters are wildcards within multiple-use blocks, which are
replaced with current values when the relevant block is called.

C

Communications
Processor

Communications processors are modules for point-to-point connections and
bus connections.

Configuration The configuration is the setup of individual modules of the PLC in the
configuration table.

CPU Central processing unit of the S7 programmable controller with control and
arithmetic unit, memory, operating system, and interfaces to I/O modules.

Cycle Time The cycle time is the time the CPU needs to scan the user program once.

Cyclic Program
Processing

In cyclic program processing, the user program is executed in a constantly-
repeating program loop, called a cycle.

Glossary

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 2

D

Data Block (DB) These are blocks containing data and parameters with which the user
program works. Unlike all other blocks, data blocks do not contain
instructions. They are subdivided into global data blocks and instance data
blocks. The data held in the data blocks can be accessed absolutely or
symbolically. Complex data can be stored in structured form.

Data Type Data types allow users to define how the value of a variable or constant is to
be used in the user program. They are subdivided into elementary and
structured data types.

Default Setting The default setting is a practical basic setting, which is always used if no
other value is specified.

Diagnostic Buffer

Every CPU has a diagnostic buffer, in which detailed information on
diagnostic events is stored in the order in which they occur.

Diagnostic Event

Diagnostic events are, for example, errors on a module or system errors in
the CPU, which may be caused by a program error or by operating mode
transitions.

Diagnostics Functions The diagnostics functions cover the entire system diagnosis and include
detection, analysis and reporting of errors within the PLC.

Download Downloading means loading load objects (e.g. code blocks) from the
programming device into the load memory of the CPU.

F

Function Block (FB) Function blocks are components of the user program and, in accordance
with the IEC standard, are “blocks with memory”. The memory for the
function block is an assigned data block of the “instance data block”.
Function blocks can be assigned parameters, or they can be used without
parameters.

H

Hardware Hardware is the term given to all the physical and technical equipment of a
PLC.

Glossary

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 3

I

Instance Data Block

An instance data block is a block assigned to a function block and contains
data for this particular function block.

Interface Submodule

Interrupt

The CP 441-2 interface submodule is responsible for the physical
conversion of signals. By changing the interface submodule, you can make
the communications processor compatible with the communications partner.

An interrupt occurs when program processing in the processor of a PLC is
interrupted by an external alarm.

L

LRC Longitudinal Redundancy-Check = Checksum which guaranteed accuracy
of error recognition.

M

Module Modules are pluggable printed circuit boards for programmable controllers.

Module Parameter Module parameters are used to set the module reactions. A distinction is
made between static and dynamic module parameters.

O

Online/Offline Online means that a data circuit exists between PLC and programming
device. Offline means that no such data circuit exists.

Online Help STEP 7 allows you to display contextual help texts on the screen while you
are working with the programming software.

Operand An operand is part of a STEP 7 instruction and states with what the
processor is to do something. It can be both absolutely and symbolically
addressed.

Operating Mode The SIMATIC S7 programmable controllers have three different operating
modes: STOP, RESTART and RUN. The functionality of the CPUs varies in
the individual operating modes.

Operating System of
the CPU

The operating system of the CPU organizes all functions and operations of
the CPU which are not connected to a specific control task.

Glossary

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 4

P

Parameter Parameters are values that can be assigned. A distinction is made between
block parameters and module parameters.

Parameter Assignment Parameter assignment means setting the behavior of a module.

Parameter Assignment
Tool CP:
Point-to-Point
Communication,
Parameter Assignment

The CP Point-to-Point Communication, Parameter Assignment Tool is used
to assign parameters to the interface submodule of the communications
processor and to set the driver-specific parameters. The standard range is
expanded for each loadable driver.

Point-to-Point
Connection

In a point-to-point connection the communications processor forms the
interface between a PLC and a communications partner.

Procedure The execution of a data interchange operation according to a specific
protocol is called a procedure.

Process Image

The process image is a special memory area in the PLC. At the beginning
of the cyclic program, the signal states of the input modules are transferred
to the process image input table. At the end of the cyclic program, the
process image output table is transferred to the output modules as signal
state.

Programmable
Controller

Programmable controllers (PLCs) are electronic control devices consisting
of at least one central processing unit, various input/output modules, and
operator control and monitoring devices.

Project Configuration
of Data Link

Project configuration of data link is the term given to the allocation of a
Connection ID in the system function block. The Connection ID enables the
system function blocks to communicate between two communication
terminal points.

Protocol
The communications partners involved in a data interchange must abide by
fixed rules for handling and implementing the data traffic. These rules are
called protocols.

R

Rack A rack is the rail containing slots for mounting modules.

RESTART On transition from the STOP to the RUN mode, the PLC goes through the
RESTART mode.

Glossary

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 5

S

Software Software is the term given to all programs used on a computer system.
These include the operating system and the user programs.

Standard Mode The standard mode of Modbus ASCII slave driver means, that the
parameter “with 32-Bit registers” is not set. In this mode all registers imply
16-bit values.

STEP 7 This is the programming software for SIMATIC S7 programmable
controllers.

System Block System blocks differ from the other blocks in that they are already
integrated into the S7-300/400 system and are available for already defined
system functions. They are subdivided into system data blocks, system
functions, and system function blocks.

System Function (SFC) System functions are modules without memory which are already integrated
into the operating system of the CPU and can be called up by the user as
required.

System Function
Block (SFB)

System function blocks are modules with memory which are already
integrated into the operating system of the CPU and can be called up by the
user as required.

U

Upload Uploading means loading load objects (e.g. code blocks) from the load
memory of the CPU into the programming device.

User Program The user program contains all instructions and declarations for signal
processing, by means of which a system or a process can be controlled.
The user program for SIMATIC S7 is structured and is divided into smaller
units called blocks.

V

Variable A variable is an operand (e.g. E 1.0), which can have a symbolic name and
can therefore also be addressed symbolically.

Glossary

Loadable Driver CP341: MODBUS ASCII Slave with 32-Bit Extension
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 6

W

With 32-Bit Registers When choosing “with 32-Bit Register” mode, holding registers can imply 32-
bit values (integer and floating point) as well as 16-bit values when
accessed by a master.

Work Memory The work memory is a RAM on the CPU, which the processor accesses
while processing the user program.

	1 Product Description
	1.1 Usage Possibilities
	1.2 Hardware and Software Prerequisites
	1.3 Summary of the Modbus Protocol
	1.4 Notes

	2 Installation
	2.1 Use of the Dongle
	2.2 Interface Connection

	3 Mode of Operation of the Data Link
	3.1 Components of the SIMATIC / Modbus Slave Data Link
	3.2 Task Distribution
	3.3 Used Modbus Function Codes
	3.4 Data Areas in the SIMATIC CPU
	3.5 Access with Bit-Orientated Function Codes
	3.6 Access with Register-Orientated Function Codes
	3.6.1 Access to Registers “with 32-Bit Register” Not Set
	3.6.2 Access to Registers ”with 32-Bit Register” Set
	3.6.3 Access with Function Code 4

	3.7 Enable Write Access

	4 Commissioning the Driver
	4.1 Installing the Driver on the STEP 7 Programming Device / PC
	4.2 Uninstalling the Driver
	4.3 Configuring the Data Link CP in Step7
	4.4 Assigning Parameters to the CP
	4.5 Assigning Parameters to the Loadable Driver
	4.6 Loading the Driver to the CP
	4.7 Loading the Configuration and Parameter Assignment Data

	5 Modbus ASCII Driver Specific Parameters
	5.1 Modbus Slave Protocol Parameters
	5.2 Conversion of Modbus Addresses for Bit Functions
	5.3 Conversion of Modbus Addresses for Register Functions
	5.3.1 Conversion for Register Functions in Standard Mode
	5.3.2 Conversion for Register Functions in Mode “with 32-Bit Register”

	5.4 Limits for Write Functions
	5.5 RS422/485 (X27) Interface
	5.6 RS232 Secondary Signals

	6 Commissioning the Communications FB
	6.1 Installing the FB
	6.2 STEP7 Project
	6.3 FB 81 Parameters
	6.4 Program Call
	6.5 Cyclic Operation

	7 CPU – CP Interface
	8 Transmission Protocol
	8.1 Message Structure
	8.2 Exception Responses
	8.3 RS 232C Secondary Signals

	9 Function Codes
	9.1 Function Code 01 – Read Coils
	9.2 Function Code 02 – Read Discrete Inputs
	9.3 Function Code 03 – Read Holding Registers in Standard Mode
	9.4 Function Code 03 – Read Holding Registers in Mode “with 32-Bit Register”
	9.5 Function Code 04 – Read Input Registers
	9.6 Function Code 05 – Write Single Coil
	9.7 Function Code 06 – Write Single Register in Standard Mode
	9.8 Function Code 06 – Write Single Register in Mode “with 32-Bit Register”
	9.9 Function Code 08 - Diagnostics
	9.10 Function Code 15 – Write Multiple Coils
	9.11 Function Code 16 – Write Multiple Registers in Standard Mode
	9.12 Function Code 16 – Write Multiple Registers in Mode “with 32-Bit Register”

	10 Diagnostics of the Driver
	10.1 Diagnostics via Display Elements (LEDs)
	10.2 Diagnostic Messages of the Function Blocks of the CP 341
	10.3 Table of Errors / Events
	10.3.1 Error Codes for “CPU Job Errors”
	10.3.2 Error Codes for “Receive Errors”
	10.3.3 Error Codes in SYSTAT for “General Processing Errors”

	11 Diagnostics of the Communications FB
	11.1 Diagnostics via Parameters ERROR_NR, ERROR_INFO
	11.1.1 Errors during “Initialization”
	1.1.1
	11.1.2 Errors during “Processing of Function Codes”
	11.1.3 “Other” Errors

	A Technical Data
	B Wiring Diagrams Multipoint
	C Access Cheat Sheat
	D Literature List
	 Glossary

